Advertisement

操作系统实验报告(第二次):进程与线程的创建.doc

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本实验报告详细记录了在操作系统课程中进行的第二次实验内容,主要探讨并实践了进程和线程的创建过程及其相关特性。通过理论结合实际操作的方式加深对多任务处理机制的理解。 实验二:进程与线程的创建 1. 在Linux环境下编写一个应用程序,命名为an_ch2_1b。此程序将持续输出以下行:“Those output come from child,[系统时间]”。另外写另一个应用程序,命名为an_ch2_1a。该程序需要创建子进程来执行an_ch2_1b。这个程序会不断显示如下信息:“Those output come from child,[系统时间]”。运行这些程序后,请观察并解释所看到的现象。 2. 在Linux环境下编写一个控制台应用程序,在此程序中有一个共享的整型变量shared_var,其初始值为0;随后创建一个新的线程与主线程并发执行。新生成的线程和主线程都将不断地循环,并在每次循环时输出shared_var 的当前值。其中,主线程会在每个循环里对shared_var进行加1操作;而新的线程则会持续地将shared_var减1。观察程序运行的结果并解释你的发现。 3. 提交源代码以及实验报告。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ):线.doc
    优质
    本实验报告详细记录了在操作系统课程中进行的第二次实验内容,主要探讨并实践了进程和线程的创建过程及其相关特性。通过理论结合实际操作的方式加深对多任务处理机制的理解。 实验二:进程与线程的创建 1. 在Linux环境下编写一个应用程序,命名为an_ch2_1b。此程序将持续输出以下行:“Those output come from child,[系统时间]”。另外写另一个应用程序,命名为an_ch2_1a。该程序需要创建子进程来执行an_ch2_1b。这个程序会不断显示如下信息:“Those output come from child,[系统时间]”。运行这些程序后,请观察并解释所看到的现象。 2. 在Linux环境下编写一个控制台应用程序,在此程序中有一个共享的整型变量shared_var,其初始值为0;随后创建一个新的线程与主线程并发执行。新生成的线程和主线程都将不断地循环,并在每次循环时输出shared_var 的当前值。其中,主线程会在每个循环里对shared_var进行加1操作;而新的线程则会持续地将shared_var减1。观察程序运行的结果并解释你的发现。 3. 提交源代码以及实验报告。
  • 优质
    本实验报告详细探讨了在操作系统课程中进行的进程创建实验。通过理论与实践相结合的方式,深入理解进程的概念、特性及其实现机制,并使用具体的编程案例加以说明。 操作系统 进程创建实验报告调用fork()创建子进程的原理如下: 在UNIX系统中,进程既是独立拥有资源的基本单位也是调度的基本单元。每个进程实体由程序区、数据区、栈区及共享存储区等构成,并且这些区域被划分为若干页以方便管理。每一个进程中都配置了一个唯一的进程控制块(PCB),用于管理和控制进程。 1. 进程表项:包括一些最常用的核心信息,如PID和UID;状态描述符;内存地址以及软中断信号、计时域等。 2. U区:保存了与每个进程相关的私有数据。U区内含指针指向用户区域的开始位置,并且包含诸如文件描述符表在内的相关信息。 3. 系统区表项:记录各个段在物理存储器中的地址信息,以便实现内存中不同区域之间的共享和保护机制。 4. 进程区表:为每个进程提供了一张表格用于管理其独立的逻辑分区。这张表格帮助操作系统将虚拟地址空间映射到实际内存位置。 UNIX系统中的一个运行程序被称为“进程映像”,它由三个主要部分组成: 1. 用户级上下文,主要是用户编写的代码。 2. 寄存器上下文,包含CPU状态寄存器的值等信息。 3. 系统级上下文,包括操作系统用于管理此特定进程的数据。 涉及的关键系统调用之一是fork()。它创建一个新的子进程,并将当前正在运行的程序复制到新进程中去执行。其返回情况如下: - 0:表示函数在子进程中被调用。 - 大于零的整数:代表父进程中,该值等于刚创建出的新子进程ID。 - -1: 表示失败。 当fork()成功时,它会同时向父和新生成的子进程返回不同的结果。操作系统将为这个新的执行环境分配必要的资源,并设置适当的初始状态以确保它可以独立运行。这包括复制当前进程的所有文件描述符、目录项等信息给子进程并增加相应的引用计数。 总体而言,在成功调用fork()之后,父与子两个进程会同时并发地继续各自的程序流程,但它们的执行上下文都是从同一个起点开始的。
  • 线撤销
    优质
    本实验报告探讨了在操作系统中线程的创建和撤销过程。通过实际操作,深入理解线程管理机制及其对系统性能的影响,并分析相关代码实现细节。 操作系统实验报告:线程的创建和撤销;基于Windows XP系统进行操作;需要提前安装虚拟机软件;内含源程序代码及运行结果展示。
  • Linux父子.docx
    优质
    本实验报告详细记录了在Linux操作系统环境下进行进程创建及父子进程间通信的实验过程,分析了fork()、exec()和wait()等系统调用的工作原理及其应用实例。 编写一个dLinux程序来创建进程并进行通信。该程序要求父进程创建一个子进程,在返回后父子进程分别循环输出字符串The parent process.及The child process.各5次,每次输出之后使用sleep(10)延时10秒再进入下一次循环。请提供源代码和运行结果。
  • 关于线.doc
    优质
    本实验报告探讨了操作系统中进程与线程的基本概念及创建方法。通过编程实践,深入理解两者之间的区别及其在资源管理和任务调度中的作用,并分析其性能差异。 在Linux环境下编写一个应用程序,并命名为an_ch2_1b。该程序会持续输出以下内容:Those output come from child,[系统时间]。 另外,在同一环境中创建另一个名为an_ch2_1a的应用程序,它会在运行时生成一个子进程来执行an_ch2_1b。这个程序则不断显示如下信息:Those output come from child,[系统时间]。 观察并分析这两个应用程序的运行结果,并解释所看到的现象。 同时,在Linux环境中编写另一个控制台应用程序,其中包含了一个初始值为0的共享整型变量shared_var。在该程序中创建一个新的线程使其与主线程并发执行。两个线程会不断地循环输出shared_var 的当前值;而主线程则持续地对shared_var进行加1操作(每次循环时),新创建的线程则不断对其进行减1处理(同样,每次循环时)。 观察此程序运行的结果,并解释你所看到的现象。
  • 优质
    本实验旨在通过实践探索操作系统中进程的创建机制,深入理解进程管理的核心原理与技术实现。参与者将亲手操作模拟环境,掌握进程控制块(PCB)构造及初始化方法,体验并发执行的魅力,为后续学习奠定坚实基础。 创建进程是一个很好的实践机会。通过此过程可以加深对操作系统系统调用功能及进程概念的理解,并明确程序与进程之间的区别。同时,还能掌握在Linux环境下创建进程的方法,进一步理解多个进程如何并发执行。
  • 控制
    优质
    本实验报告详述了操作系统课程中进行的进程控制实验第二部分的内容。通过编写和测试相关程序,深入理解操作系统的进程管理和同步机制。报告涵盖了实验目的、步骤及结果分析,并探讨了所遇问题及其解决方案。 os实验二 进程控制实验报告。包括代码和实验截图。
  • 和并发及源码
    优质
    本实验报告详细探讨了操作系统中进程的创建与管理机制,并发处理技术及其实践应用。附有相关代码实现。 熟悉Linux环境的基本使用命令以及vi、gdb、gcc等编程工具或软件的使用方法。 利用fork()函数创建子进程,并考察fork()函数生成的子进程中同名变量是否为临界资源。 编写一个程序,要求父进程通过调用fork()函数两次来创建两个独立的子进程。这三个并发运行的进程需要输出各自的执行状态信息:如“父进程正在执行...”,“子进程1正在执行...”和“子进程2正在执行...”。一段时间后,由父进程分别结束这两个子进程,并显示相应的消息:“子进程1被父进程杀死”,“子进程2被父进程中止”,最后输出:“父进程结束”。 实验报告中需要包含流程图、运行结果以及源代码。
  • 管理同步).doc
    优质
    本实验报告详细探讨了在操作系统课程中进行的进程管理和同步实验。通过理论分析和实践操作,深入理解了进程控制、互斥锁及信号量等概念的实际应用,并解决了相关的编程问题。 操作系统进程管理与同步实验报告 在操作系统内核功能中,进程管理和进程同步是两个核心方面。前者涉及对创建、执行、调度及终止的控制;后者则关注多个并发进程中协作机制的设计以确保系统稳定运行无竞争条件和死锁。 本项目的目的是让学生深入理解实现过程管理的方法,并掌握解决进程间同步问题的技术手段。实验要求学生熟悉银行家算法及其应用,同时探索如何利用该算法处理资源分配挑战。 主要内容包括: - 实现银行家算法来模拟调度流程。 - 构建读写者优先策略的解决方案。 - 开发安全性检查函数以支持银行家算法运作。 - 通过输入合法与非法请求验证系统性能。 实验步骤如下: 1. 学习和掌握安全性和银行家算法的基本原理; 2. 针对特定情景(例如,三种资源类型及五个进程),设计恰当的数据结构来表示每个进程的当前状态及相关信息; 3. 编写代码实现安全性检查函数,并编写主程序以动态获取并处理用户输入的信息,进而调用上述函数执行银行家算法; 4. 对系统进行测试,确保其能够正确响应各种可能的情况。 实验环境: - 使用Windows 2000操作系统 - 开发工具为Microsoft Visual C++ 6.0 源代码中包括了实现银行家算法所需的所有组件:数据结构定义、安全性检查函数及主程序。整个项目以C语言编写,使用到的库文件有malloc.h, stdio.h 和stdlib.h。 在上述代码里设计了一系列的数据类型来存储重要信息: - struct allocation用于记录每个进程已占用资源数量; - struct max表示各进程的最大需求量; - struct available则储存系统中未被使用的资源总数; - 结构体need用来跟踪各个任务还需多少额外的资源; - finish结构体标识了所有作业是否已经完成状态; - path类型定义了一条可能的任务执行路径。 此外,还编写了一个关键函数来判断在给定情况下能否安全地分配更多资源。此功能利用动态内存管理技术实现对资源的有效控制和释放操作。 主程序部分则负责从用户那里获取初始配置数据以及后续的请求,并通过调用之前定义的安全性检查器来进行决策过程。 实验结果展示了银行家算法能够有效地防止死锁的发生,同时保证系统不会陷入饥饿状态。这表明所开发的安全性函数确实可靠地完成了其预定目标。