Advertisement

基于Carsim与Matlab的联合仿真模型跟踪研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究采用Carsim和Matlab进行联合仿真实验,旨在优化车辆控制系统的模型跟踪性能,提升驾驶安全性和舒适性。 压缩包包含Carsim使用的cpar文件以及Matlab的Simulink模型和S-function脚本段落件。纯跟踪算法作为车辆控制入门级控制算法,非常有必要了解学习。目前主流轨迹追踪方法主要分为两类:基于几何的方法和基于模型预测的方法;而纯跟踪属于基于几何追踪的一种方法。 尽管在理论研究方面,纯跟踪算法可能难以取得重大突破,但在实际应用中仍然具有广泛的应用价值。其核心思想是将阿克曼转向的车辆简化为自行车两轮模型,并建立前轮转角与后轴曲率之间的关系;然后以车后轴作为切点、纵向车身方向作为切线方向,控制车辆使其后轴中心依次通过轨迹上的各个目标点。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • CarsimMatlab仿
    优质
    本研究采用Carsim和Matlab进行联合仿真实验,旨在优化车辆控制系统的模型跟踪性能,提升驾驶安全性和舒适性。 压缩包包含Carsim使用的cpar文件以及Matlab的Simulink模型和S-function脚本段落件。纯跟踪算法作为车辆控制入门级控制算法,非常有必要了解学习。目前主流轨迹追踪方法主要分为两类:基于几何的方法和基于模型预测的方法;而纯跟踪属于基于几何追踪的一种方法。 尽管在理论研究方面,纯跟踪算法可能难以取得重大突破,但在实际应用中仍然具有广泛的应用价值。其核心思想是将阿克曼转向的车辆简化为自行车两轮模型,并建立前轮转角与后轴曲率之间的关系;然后以车后轴作为切点、纵向车身方向作为切线方向,控制车辆使其后轴中心依次通过轨迹上的各个目标点。
  • CarsimMatlab车辆仿
    优质
    本研究结合Carsim和Matlab进行车辆联合仿真,重点探讨了车辆运动控制策略及其路径追踪性能优化。通过模拟不同驾驶场景,分析并改进算法以实现更精准、高效的车辆轨迹跟踪能力。 压缩包包含了Carsim使用的cpar文件以及MATLAB的Simulink模型和S-function脚本段落件。纯追踪算法作为车辆控制的基础入门级控制方法,非常值得学习了解。目前主流的轨迹跟踪方法主要分为两类:基于几何的方法和基于模型预测的方法,而纯追踪则属于前者。尽管在理论研究方面,纯追踪算法难以有大的创新突破,但在实际应用中仍被广泛采用。其核心思想是将具有阿克曼转向特性的车辆简化为自行车两轮模型,并建立前轮转角与后轴曲率之间的关系。随后以车的后轴为切点、车身纵向方向作为切线,通过控制使车辆后轴中心依次经过预定轨迹上的各个关键点来实现追踪效果。
  • 控制路径算法及CarSimSimulink仿
    优质
    本研究提出了一种基于纯跟踪控制策略的路径跟踪算法,并通过CarSim和Simulink平台进行联合仿真验证。 纯跟踪控制与路径跟踪算法是自动驾驶及智能车辆领域中的关键技术之一。这些算法的主要目标在于确保车辆能够准确且稳定地沿着预定路线行驶,在实际应用中通常结合车辆动力学模型以及实时传感器数据,以实现精确的轨迹执行。 在联合仿真过程中,Carsim和Simulink是常用的工具。其中,Carsim是一款专业的车辆动力学模拟软件,可精准地模拟各种驾驶条件下的车辆行为;而Simulink则是MATLAB环境中的一个动态系统建模与仿真平台,在控制系统的设计及分析中被广泛应用。 通过将Carsim的车辆模型与Simulink的控制算法结合使用,可以提供全面的测试环境。在Simulink内设计并优化路径跟踪控制器(如PID控制器、滑模控制器或基于模型预测控制(MPC)的方法),随后利用接口使这些控制器输出作为车辆输入,以模拟真实驾驶情况。 常见的几种路径跟踪方法包括: 1. **PID控制器**:这是一种基本且常用的策略,通过比例(P)、积分(I)和微分(D)项的组合调整行驶方向,使其尽可能接近预定路线。 2. **滑模控制**:这种非线性控制方式具有良好的抗干扰性和鲁棒性,能够有效应对车辆模型中的不确定性因素。 3. **模型预测控制(MPC)**:MPC是一种先进的策略,考虑未来一段时间内的系统动态,并通过优化算法在线计算最佳的控制序列,以实现最小化跟踪误差或满足特定性能指标的目标。 在联合仿真过程中,我们可通过调整控制器参数、修改车辆模型或者改变模拟条件来评估不同算法在各种场景下的表现。图像文件(例如1.jpg、2.jpg和3.jpg)可能会展示仿真的可视化结果,包括行驶轨迹、控制信号的变化以及误差分析等;而纯跟踪控制路径跟踪算法联合.txt可能包含详细的仿真设置信息、数据及分析。 研究和发展这些技术对于提高自动驾驶车辆的安全性和性能至关重要。借助Carsim与Simulink的联合仿真环境进行深入开发和验证,为实际应用提供了可靠的基础支持。
  • 预测控制(MPC)无人驾驶汽车轨迹算法MATLAB/SimulinkCarsim仿
    优质
    本研究聚焦于开发并优化一种基于模型预测控制(MPC)的无人驾驶车辆轨迹跟踪算法,通过在MATLAB/Simulink和Carsim平台上的联合仿真测试,验证了该算法的有效性和鲁棒性。 基于模型预测控制(MPC)的无人驾驶汽车轨迹跟踪控制算法采用MATLAB/simulink与Carsim联合仿真技术实现。该系统包含cpar、par以及slx文件,适用于MATLAB2018和Carsim2019版本。操作步骤为先导入capr文件至Simulink中进行模拟,并且支持通过S-Function函数编写代码以修改算法细节。此模型特别针对四轮转向汽车的轨迹跟踪进行了设计与优化。
  • Stanley算法自动驾驶路径仿:高精度效果展示(MATLABCARSIM仿
    优质
    本研究采用Stanley算法,在MATLAB和CARSIM平台进行联合仿真,详细探讨了自动驾驶车辆的路径跟踪性能,并展示了高精度的效果。 在自动驾驶控制领域,斯坦利(Stanley)算法用于路径跟踪的仿真验证已经通过MATLAB与CarSim联合仿真的方式得到了实现。这种无人驾驶斯坦利控制器能够有效地完成双移线、圆形以及其他自定义路径的精确跟踪任务。 经过实验测试,该系统的跟踪效果表现出色,几乎不存在误差问题,并且其最大跟踪误差保持在0.05米以内。这证明了基于Stanley算法构建的路径跟踪系统具有极高的精度和可靠性。
  • 预览控制 车道保持 轨迹 Carsimsimulink仿.rar
    优质
    本资源探讨了Carsim与Simulink在车辆预览控制、车道保持及轨迹跟踪中的应用,通过联合仿真技术优化汽车动态性能。适合自动驾驶领域研究人员参考学习。 本人搭建了一些Carsim与Simulink的联合仿真模型,并介绍了车道保持(LKA)、自适应巡航(ACC)、轨迹跟随、横向控制、预瞄跟随、单点预瞄、多点预瞄、滑模变结构控制及模糊控制等算法的实现。这些资料旨在为有相关学习需求或兴趣的学生提供交流和学习的机会,不涉及积分或其他形式的交换,请大家理解并尊重他人劳动成果,谢谢!
  • CarSim和Simulink仿
    优质
    本研究构建了基于CarSim与Simulink的联合仿真平台,用于汽车系统的建模、分析及优化。通过集成两软件优势,提升车辆动力学研究效率和精度。 Carsim和Simulink的入门资料适用于MATLAB 2015B版本。一般情况下可以顺利打开使用,如果遇到错误,请参考相关文档或论坛中的解决方案。具体可参阅关于解决此类问题的文章(如上的文章)。
  • CarSimSimulink仿.rar
    优质
    本资源提供CarSim与Simulink联合仿真的模型文件,适用于车辆动力学分析和控制系统设计的研究及教学。 该资源提供了一个基于PID算法控制的防抱死制动系统(ABS)Carsim与Simulink联合仿真模型,包括Carsim模型文件和Simulink模型文件。下载后可以直接进行联仿,方便学习。
  • MPCCarSimSimulink仿.zip
    优质
    本资源提供了一个基于模型预测控制(MPC)的车辆动力学仿真案例,通过将CarSim软件与MATLAB Simulink环境进行集成,实现对复杂驾驶条件下的车辆动态响应分析。包含详细配置文件和模型代码,便于用户深入研究汽车控制系统的设计与优化。 本资源介绍如何使用MPC算法搭建Carsim/Simulink模型进行仿真,并包含重要的MPC算法的m文件及相关重要代码的具体说明,适合初学者学习。
  • CarSimMATLAB汽车ABS糊控制仿实验
    优质
    本研究利用CarSim与MATLAB进行汽车ABS系统的模糊控制仿真实验,旨在优化车辆制动性能,提升行车安全。 基于CarSim和Matlab的汽车ABS模糊控制联合仿真研究 本研究利用Carsim与Simulink进行联合仿真,设计了一种防止车辆高速行驶时车轮抱死现象的ABS(防抱死制动系统)模糊控制策略,并将其与传统的逻辑门限值控制方法进行了对比。在高附着系数、低附着系数、对开路面以及对接路面上这四种工况下进行了一系列仿真测试。 结果显示,所设计的模糊控制系统能够显著提升车辆的制动性能,在减少刹车距离的同时还能使滑移率保持在一个接近最优状态的位置。模型文件夹中包含了模糊控制器、Simulink模型和Carsim模型的相关内容。