Advertisement

基于仿真的并联谐振DC/DC变换器设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究聚焦于通过仿真技术优化并联谐振型直流-直流(DC/DC)转换器的设计,旨在提升其效率与稳定性。 本段落涉及一篇12000字的论文,查重率需控制在25%以下,并包含一个基于MATLAB的仿真模型及相应的结果分析。 该研究关注的是并联谐振DC/DC变换器的设计与实现。逆变器采用PWM(脉宽调制)技术驱动单相全桥IGBT模块(即H桥结构)。栅极侧滤波器采用了经典的LCL拓扑,其中电感均匀分布在线路和中性支路之间。 在仿真模型的构建过程中,简化了整流与滤波电路环节,并用直流电压源进行替代。逆变部分采用双桥并联结构(但在模型内以单个桥式模块表示),并且IGBT参数基于最新一代原型设定。负载则被设计为RLC并联谐振类型。 控制系统由五个Simulink子系统构成,分别是最大功率点跟踪(MPPT)控制器、直流电压稳压器、电流调节器、PLL和测量以及PWM信号发生器。其中MPPT控制器采用“扰动与观察”技术来自动调整逆变直流稳压器的VDC参考值,以确保从光伏串中提取的最大功率输出。 具体来说: - MPPT系统通过改变直流电压设定点(VDC),使系统能够获取最大可能的电能; - 直流电压控制器用于确定维持有功电流(Id)所需的参数设置; - 电流调节器则负责根据当前需求调整逆变器参考电压,同时无功电流(Iq)在此模型中被设为零以简化分析; - PLL和测量模块确保系统能够准确同步并获取必要的信号数据; - PWM发生器采用双极性调制方式产生触发信号至IGBT。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 仿DC/DC
    优质
    本研究聚焦于通过仿真技术优化并联谐振型直流-直流(DC/DC)转换器的设计,旨在提升其效率与稳定性。 本段落涉及一篇12000字的论文,查重率需控制在25%以下,并包含一个基于MATLAB的仿真模型及相应的结果分析。 该研究关注的是并联谐振DC/DC变换器的设计与实现。逆变器采用PWM(脉宽调制)技术驱动单相全桥IGBT模块(即H桥结构)。栅极侧滤波器采用了经典的LCL拓扑,其中电感均匀分布在线路和中性支路之间。 在仿真模型的构建过程中,简化了整流与滤波电路环节,并用直流电压源进行替代。逆变部分采用双桥并联结构(但在模型内以单个桥式模块表示),并且IGBT参数基于最新一代原型设定。负载则被设计为RLC并联谐振类型。 控制系统由五个Simulink子系统构成,分别是最大功率点跟踪(MPPT)控制器、直流电压稳压器、电流调节器、PLL和测量以及PWM信号发生器。其中MPPT控制器采用“扰动与观察”技术来自动调整逆变直流稳压器的VDC参考值,以确保从光伏串中提取的最大功率输出。 具体来说: - MPPT系统通过改变直流电压设定点(VDC),使系统能够获取最大可能的电能; - 直流电压控制器用于确定维持有功电流(Id)所需的参数设置; - 电流调节器则负责根据当前需求调整逆变器参考电压,同时无功电流(Iq)在此模型中被设为零以简化分析; - PLL和测量模块确保系统能够准确同步并获取必要的信号数据; - PWM发生器采用双极性调制方式产生触发信号至IGBT。
  • 全桥LLCDC-DCSimulink仿
    优质
    本研究探讨了基于Simulink平台对全桥LLC谐振拓扑在直流-直流转换中的应用进行建模与仿真的方法,分析其性能特点。 全桥LLC谐振DC-DC变换器是一种高效的电源转换技术,在高性能的电力电子系统中有广泛应用。该变换器通过AC/DC整流(使用二极管不控整流)和DC/DC转换两个环节,将交流电高效地转化为稳定的直流输出电压。在给定案例中,输入为280V单相交流电,经过全桥LLC谐振电路的处理后产生恒定的270V直流电压,并且功率等级达到3KW。 变换器采用脉冲频率调制(PFM)技术来控制开关频率,从而实现输出电压的精确调节和稳定。具体而言,在仿真中设定输入为交流电280V、输出为恒压直流电270V及3KW的系统要求下,通过闭环控制系统实时监控并调整开关频率以维持稳定的输出电压。 该仿真实验能够在Matlab Simulink平台直接运行,并且适用于最新版本的Matlab 2023a。这不仅简化了实验操作流程,还提高了研究效率和模型通用性。全桥LLC谐振变换器的关键特性包括高效率、高功率密度以及优良的负载适应性和输入电压稳定性。 在设计过程中,需要关注多个关键参数如谐振频率、品质因数及开关元件的最大承受能力等,并且要合理选择控制策略以确保系统性能最优。例如,在PFM控制中,准确建立数学模型并应用算法是实现输出稳定性的必要条件之一。 全桥LLC谐振变换器的应用范围广泛,包括电动汽车充电站设备、工业电源供应以及可再生能源电力转换等领域。其高效稳定的特性使其在现代电力电子技术领域占据重要地位,并且对于绿色能源的开发和利用具有重要意义。因此,设计与仿真此类变换器不仅推动了相关领域的技术创新进步,也为实现更加可持续发展的未来提供了技术支持。 知识总结: 1. 全桥LLC谐振DC-DC变换器是一种高效的电源转换解决方案,在高性能电力电子应用中被广泛应用。 2. 该技术通过AC/DC整流和随后的全桥LLC谐振电路处理将交流电转化为稳定直流输出,利用PFM控制实现电压精确调节。 3. 在Matlab Simulink平台上的仿真实验可直接适用于最新版软件(如Matlab 2023a),无需额外修改或配置。 4. 设计和优化全桥LLC谐振变换器涉及复杂的拓扑结构与参数选择,需要细致考虑控制策略的实现以保证性能最优。 5. 其应用领域涵盖电动汽车充电、工业电源供应及可再生能源电力转换等多个方面。
  • CLLC型双向DC/DCSimulink仿
    优质
    本研究聚焦于CLLC谐振型双向DC/DC变换器,利用MATLAB中的Simulink工具进行详尽仿真分析,旨在探索其在电力电子领域的高效应用与优化设计。 基本CLLC谐振型双向DC/DC变换器是一种电能变换装置,在这种装置中电压的正负极性保持恒定,而电流的方向会根据系统的工作状态发生变化。
  • 半桥LLCDC/DC
    优质
    简介:半桥LLC谐振DC/DC变换器是一种高效的电力电子电路,通过利用谐振原理减少开关损耗,广泛应用于各种电源系统中。 半桥LLC谐振型直流变换器采用PLECS 4.5.6软件版本。
  • 隔离型DC/DC及LLC闭环仿频控制技术详解
    优质
    本文章深入探讨了隔离型DC/DC变换器的设计原理,并详细解析了应用于LLC谐振变换器中的变频闭环仿真技术,为电力电子领域的研究者提供详实的技术参考。 隔离型DC/DC变换器设计与LLC谐振变换器闭环仿真的研究:变频控制技术的详细实践 隔离型DC/DC变换器是一种电力电子设备,在电能传输和转换中发挥着关键作用,能够在隔离条件下实现直流电压从一个电路到另一个电路的有效传递,并且能够调整输出电压。这种类型的变换器广泛应用于通信电源、汽车电子以及航空航天等领域。 LLC谐振变换器则利用了谐振现象来优化能量的传输过程,具有软开关特性,在减少开关损耗的同时提高转换效率。由于其卓越性能,它在高频开关电源领域越来越受到重视。 闭环仿真是一种基于数学模型进行模拟实验的技术手段,通过构建系统反馈控制模型来预测实际运行情况,并用于分析和改进系统的性能参数。这种技术对于电力电子设备的设计至关重要。 变频控制技术指的是根据需要调整开关频率以实现对输出电压或电流的精确调节的方法,在隔离型DC/DC变换器及LLC谐振变换器中尤其重要,有助于增强其动态响应能力和稳定性。 本段落详细解析了上述三种关键技术:即隔离型DC/DC变换器设计、LLC谐振变换器闭环仿真以及变频控制技术。作者深入探讨了隔离式转换的设计,并讨论了它在现代电力电子领域的关键性作用;通过对比不同设计方案的优缺点,提出了创新见解并详述了自己的设计理念。 此外,文档还重点研究了LLC谐振变换器的闭环仿真实验方法及其应用价值。作者不仅讲解了仿真原理和操作流程,而且展示了如何利用这一技术优化设备性能,并通过实验数据验证其有效性。 最后,在变频控制方面,文章深入探讨了该技术在隔离型DC/DC转换及LLC谐振转换中的具体实施细节,包括策略选择、系统建模以及对整体表现的影响。实证研究表明,采用这种频率调节方法可以显著提高变换器的工作效率和稳定性。 本段落为相关领域的研究人员提供了宝贵的参考信息,并且也为电力电子设备的实际设计与优化工作提出了切实可行的解决方案和技术指导。
  • 电流模式零电压软开关推挽DC/DC(2010年)
    优质
    本文提出了一种基于电流模式控制的零电压软开关并联谐振推挽DC/DC变换器,适用于高效、低损耗的电力电子应用。通过优化电路设计,实现了器件在零电压条件下切换,显著提升了系统效率与可靠性。该变换器特别适合于高压大功率场合的应用需求。 本段落分析了电流型软开关并联谐振推挽直流-直流变换器的基本特性,并给出了在一个开关周期内不同时段通过开关管的电流与电压表示式及临界周期的概念,研究了开关周期与谐振电压之间的非线性关系。实验电路已经制作完成,模型也进行了仿真和验证。结果显示,该变换器具有良好的零电压软开关特性和负载特性、较高的功率转换效率以及较低的电磁辐射。只需在小范围内调整开关频率即可获得性能优良的稳压效果。
  • 双向DC-DC仿研究论文.pdf
    优质
    本文针对双向DC-DC变换器并联运行进行了仿真研究,分析了其控制策略和均流特性,为提高系统稳定性和效率提供了理论依据。 本段落探讨了采用双向半桥变换器拓扑结构的双向DC-DC变换器的工作原理,并分析了电源并联特性及自主均流法的基本原理,同时提供了参数设计的方法。通过以Buck/Boost变换器并联系统为例,利用PID控制方式,在Matlab中对该模型进行了仿真研究。将仿真的结果与未采用均流方法的情况进行对比后发现,Buck/Boost变换器能够实现能量的双向传输,并且可以有效地达成电流均衡的目标,从而验证了分析的有效性。这项工作为推广和应用双向DC-DC变换器自主均流技术提供了重要的仿真依据。
  • Plecs交错双向DC-DC
    优质
    本研究聚焦于利用Plecs仿真软件对交错并联双向DC-DC变换器进行建模与分析,探讨其在高效能量传输中的应用潜力。 该文件包含了一个交错并联双向DC-DC变换器的Plecs仿真模型。这一模型详细地模拟了交错并联结构的双向DC-DC变换器的工作情况。与传统Buck-Boost变换器相比,这种结构具有更小的电流纹波和更低的开关器件电压应力,从而更加有利于变换器运行。欢迎各行业的朋友下载该资源。
  • LLC双向全桥DC-DC研究
    优质
    本研究聚焦于基于LLC谐振原理设计的双向全桥DC-DC变换器,探讨其在高效能量传输和稳定电压调节方面的应用与优化。 基于LLC谐振的双向全桥DC-DC变换器的研究主要探讨了该类型变换器的工作原理、性能特点以及应用前景。通过对LLC谐振电路的设计优化,可以有效提升双向全桥DC-DC变换器在不同负载条件下的效率和稳定性,并且能够满足新能源系统中对高功率密度及高效能的要求。
  • 光伏系统DC/DC仿
    优质
    本研究聚焦于光伏系统中DC/DC变换器的设计与优化,通过理论分析和计算机仿真技术,探讨了提高转换效率、稳定性及适应不同光照条件的有效方法。 光伏系统DC-DC变换器的设计与仿真研究涉及对光伏系统的电力电子元件——DC-DC变换器进行深入设计及模拟实验。该过程包括了从理论分析到实际应用的各个环节,旨在优化变换器性能、提高光伏发电效率,并确保其在不同环境条件下的稳定运行。通过详细的设计流程和准确的仿真测试,可以有效解决光伏系统中遇到的各种技术挑战,为未来大规模的应用奠定坚实的基础。