
光敏三极管的应用电路
5星
- 浏览量: 0
- 大小:None
- 文件类型:DOC
简介:
本简介探讨了光敏三极管在电子设备中的应用,特别关注其典型应用电路设计,包括光电控制、自动感应等领域。
光敏三极管是一种特殊的半导体器件,能够将光能转化为电信号,在光控、光检测以及光通信等领域有着广泛的应用。本段落旨在详细讲解其基本应用电路,并通过不同类型的实例来阐述工作原理及特点。
首先来看两种基础的输出电路:发射极输出和集电极输出。在发射极输出中(见图4-12(a)),负载连接于光敏三极管的发射端,信号与输入同相位,适用于脉冲光检测;而集电极输出则将负载置于集电极端,信号反向,适合处理入射脉冲光线。这两种电路在高温环境下暗电流较大,并可能影响到信号质量。
接下来是暗电流补偿型电路(见图4-12(c))。该设计通过基极连接晶体管实现温度补偿,提升热稳定性并减少暗电流的影响,适用于模拟光信号的测量。温度补偿可通过分压器结构调整基极电流来抵消暗电流效果。
当光敏三极管与普通晶体管组合应用时,则能进一步扩展其功能。例如,在达林顿结构电路(见图4-13)中,发射级输出形式可以驱动小型继电器;而集电极输出则提供更大的电压但信号相位相反;倒置的光电达林顿电路利用反向连接晶体管来提升放大效果,适用于微弱光信号检测。不过此类设计需注意响应速度和暗电流问题,在低速光开关中尤为适用。
与集成电路(IC)结合使用时,性能显著提高。例如,通过施密特触发器可提供强大的抗干扰能力;而运算放大器配合则能构建线性光敏传感器或增强发射极电压的放大效果,实现灵活增益控制和优良响应特性。
为了提升光敏三极管的速度与负载处理能力,常需外接晶体管(见图4-15(a)和(b))。这可降低外部变化对器件的影响,并提高系统稳定性。
实际应用中,例如在光控开关电路设计上(见图4-16),通过控制后级晶体管的导通状态来实现脉冲信号操作或直流电机驱动。当光照充足时,电机开始运转。
综上所述,根据具体需求选择合适的光敏三极管应用方式可以优化性能并满足各种应用场景的需求。
全部评论 (0)


