圆形极化天线是一种设计用于接收或发射水平和垂直偏振信号的电磁波设备,在无线通信中广泛使用,尤其适用于减少衰减和反射干扰。
圆极化天线在无线电领域扮演着至关重要的角色,尤其在航天飞行器中的应用尤为突出。这类天线因其共形、轻量、体积小以及成本低的特点而备受青睐,特别适用于位置姿态固定的飞行器通讯测控设备中。
其中,圆极化微带天线是此类天线的佼佼者。它主要依赖于贴片形状和激励模型的设计,馈电点通常位于贴片对角线上,使两种主模同相且正交,并辐射出平行于馈电点所在对角线方向的圆极化波。
产生圆极化波的关键在于生成两个幅度相同、相位相差90度的正交线极化波。在微带天线技术中,实现圆极化的手段多样,包括单点馈电式单片圆极化微带天线、正交馈电式单片圆极化微带天线以及由曲线构成宽频带和阵列形式的圆极化微带天线等。
圆极化波具有独特的性质:它是一个瞬时旋转场,其旋向分为左旋与右旋。此外,它的另一重要特性是正交性——发射右旋则只能接收右旋,反之亦然。这一原理广泛应用于通信和电子对抗领域;例如,在国际卫星V号上4GHz多波束天线中,通过使用不同极化方式实现双频谱运用。
圆极化波还具有分解任意极化波的能力,并且能够被任何类型天线接收,这使得它在电子侦察与干扰应用中极为有用。此外,当圆极化信号反射到对称目标时会变成反向旋转的波,这一特性使采用这种技术的雷达系统具备了抑制雨雾等环境因素干扰的能力。
圆极化波的关键参数包括轴比(Axial Ratio, AR),它表示最大增益方向上的相对值。对于纯圆极化的信号而言,其轴比为1dB;而当带宽内所有频率点的AR都不超过3dB时,则定义该天线具有相应的圆极化工作频段。
基于这些原理和特性,目前存在多种设计方法来实现不同类型的圆极化微带天线。单贴片式圆极化微带天线可通过不同的馈电方式产生所需的辐射模式,并且也可以通过组合多个线极化单元或其它形式的元器件形成复杂的结构以达到目标。
凭借其共形、轻量和低成本等优势,圆极化天线不仅在航天领域中得到广泛应用,在通信、雷达以及电子侦察与干扰等领域同样发挥着重要作用。未来该技术的发展有望进一步推动无线电通信领域的进步。