Advertisement

电容器市场研究报告涵盖陶瓷电容、铝电解电容、钽电容以及薄膜电容。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
电容器在电子电路设计中扮演着至关重要的角色,与电阻和电感共同构成了三大被动元件。 电子元器件的分类,主要依据其工作原理进行划分,通常分为主动器件和被动元件。主动器件,也称为有源器件或半导体器件,其工作特性在于内部具备电源供应能力。 相反,被动元件,又称无源器件,则在工作过程中不依赖于内部电源的存在,它们能够储存电量或将电能转化为各种形式的能量输出,并且只需接收到输入信号即可运行,无需外部电源的辅助。 电容器作为一种用于存储电荷和电能的被动元件,与电阻和电感并列存在于电子电路中,并且是应用最为广泛的电子元件之一。 针对不同的应用需求,电容器的分类方式多种多样;生产厂商通常会根据所采用的介质材料来组织生产经营活动。 具体而言,电容器可以根据其结构划分为固定电容、可变电容以及微调电容;此外,根据其是否具有极性特征,它们又可进一步分为具有极性和无极性类型。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 分析:聚焦
    优质
    本报告深入剖析全球电容器市场的现状与趋势,重点关注四大类核心产品——陶瓷电容、铝电解电容、钽电容和薄膜电容的市场表现和发展前景。 电容器是电子线路中的基本元件之一,并与电阻、电感一起被称为三大被动元件。根据工作特性,电子元器件可以分为主动器件(也称有源器件或半导体器件)和被动元件:前者在运行时需要内部电源支持;后者则无需任何形式的内置电源,在输入信号后即可运作且不消耗电能或将电能转换为其他形式的能量。 作为一种储存电量与能量的关键组件,电容器属于被动元器件,并被视为最常用的电子元件之一。根据不同的介质材料和工作需求,生产厂商通常会将它们分类进行生产和销售。按照结构特性来区分的话,电容器可以分为固定式、可调式以及微调型;而从极性角度来看,则有带极性的类型存在。
  • 子元MLCC
    优质
    本报告深入分析陶瓷电容器(MLCC)市场动态,涵盖技术发展、应用领域及行业趋势,为从业者提供详尽的数据支持与战略建议。 被动元件是集成电路产业发展的基础组成部分。从市场规模来看,2016年全球被动元件市场价值为242.2亿美元,并预计到2021年将达到328.9亿美元,复合年均增长率达6.29%。在应用领域方面,消费电子、汽车电子和家用电器是主要的使用场景,其中消费电子产品占据了超过70%的应用份额。 特别是在智能手机市场中,由于支持多个频段的需求增加以及苹果与三星等品牌旗舰手机内置NFC模块等因素的影响,导致每个设备需要配备更多的被动元件。对于高端智能旗舰手机而言,其对多频段的支持和额外的无线通信功能要求使得它们通常会装载超过1000颗被动元件,进一步推动了智能手机市场中对这类组件的需求增长。 相比之下,在汽车电子领域内,则存在更为严格的安全性标准以及更加细分的产品类别。因此,随着汽车电子产品技术的进步与发展趋势来看,这将促使被动元件向着更高级别和精细化的方向发展以满足市场需求。
  • 源设计中的区别去耦的应用实例.doc
    优质
    本文档深入探讨了在电源设计中三种常用电容器——瓷片电容、钽电容和电解电容之间的区别,以及它们各自的特点和应用场景。同时通过具体案例展示了如何有效应用去耦电容来优化电路性能,帮助工程师们做出更合适的选择。 在电路板电源设计过程中,电容的使用是一个常被忽略的重要环节。许多工程师专注于ARM、DSP或FPGA的研发工作,这些领域看似高端复杂,但未必能为系统提供经济且可靠的供电方案。这可能是国产电子产品功能多样却性能欠佳的原因之一。究其根本,在于研发文化的缺失:很多研发人员急躁浮夸,缺乏踏实的态度;而公司为了追求短期内的利益最大化,则只关注产品的功能性是否丰富,而不考虑长期的稳定性和可靠性问题。“今朝有酒今朝醉”的态度导致了长远发展的隐患,“路有饿死骨”也不足为惜。
  • 的选择
    优质
    本文章介绍了如何选择适合需求的铝电解电容器,包括考虑参数规格、工作温度范围以及应用领域等关键因素。 铝电解电容选型的关键知识点包括其分类、特性参数、选型依据以及封装尺寸和产品规格。 电解电容器是电子电路中的常见元件之一,由两个金属箔片构成,在两层之间填充电解质并用隔膜分隔开。根据介质的不同,可以将电解电容器分为铝电解电容和钽电解电容两大类。其中,铝电解电容以其大容量、低成本的优势广泛应用于直流电源电路中的滤波与储能功能中。其介质是阳极氧化的铝薄膜,具有较大的容量范围及较宽的工作电压区间;然而它们也有明显的缺点:正负极端性(即只能单向充电)、较高的能量损耗以及较差的频率特性。 在选择电容器时需要考虑以下重要参数: 1. 容量值:通常以微法(μF)为单位,表示储存电量的能力。根据电路设计需求来确定合适的容量大小。 2. 额定电压:指电容能够承受的最大直流电压限制;超过该数值可能导致损坏。 3. 误差范围:即实际测量到的电容量与标称值之间的偏差比例(如±5%、±10%)。 4. 封装尺寸:包括长宽高在内的物理大小,确保安装时能正确放置和焊接在电路板上。 5. 温度等级:指电容可以正常工作的温度区间。例如SG系列铝电解电容器可在-40℃至+105℃环境下运行。 6. 损耗因数(DF):衡量能量损耗程度的指标,数值越低表示性能越好。 7. 泄漏电流:在规定电压下通过电容的实际电流大小;反映了绝缘电阻的质量状况。 8. 耐久性:指产品在一定条件和时间内保持稳定性的能力限度。 9. 额定寿命:通常以高温环境下(如85℃或105℃)持续工作的时间为基准,常见的是1000小时或者2000小时的标准。 10. 频率特性:铝电解电容在不同频率下的表现情况和阻抗变化规律。 11. 交流脉动电流(Ripple Current):指电容器允许通过的最大交流波动电流大小,与工作频率有关,在测试时通常采用120Hz作为标准条件。 12. 冲击电流(Surge Current):表示在充电初期能够承受的瞬态大脉冲电流值。 此外,具体选型过程中还需要参考制造商提供的详细规格书。例如,SG系列铝电解电容器具备良好的高温耐受能力,在105℃环境下可保证至少使用1000小时,并符合RoHS环保标准等特性说明文档中所列的其他关键参数信息。 在实际应用场合下进行选型时还需考虑设备运行环境中的温度、湿度及振动等因素,以及是否需要满足特定行业规范的要求。例如,在更宽的工作温区内使用的装置,则需特别关注电容器耐高温性能;某些重要应用场景则可能对可靠性、容差和外形尺寸等有更加严格的规定。 综上所述,铝电解电容器的选择应全面考虑其容量值、额定电压范围、误差公差、封装规格以及温度适应能力等多个方面,并结合具体应用环境及特殊需求来确定最合适的型号。
  • 感、测量仪
    优质
    本产品为专业电子测量工具,适用于精确测定电路中的电感值、电容量以及电解电容特性参数。 电感、电容及电解电容测量仪具有较高的测量精度,能够满足日常需求。
  • MLCC片式多层行业
    优质
    本报告全面分析了MLCC片式多层陶瓷电容器行业的现状、发展趋势及市场前景,为业界提供详实的数据支持和深入的见解。 MLCC 产业链覆盖了从上游的陶瓷介电粉末、电极金属到下游的各种消费电子及工业应用领域。在产业的上游部分主要包括陶瓷粉末和电极金属等原材料,其中由于制备难度大,大部分市场份额由日韩供应商占据;而银、镍等用于制造内电极的材料则主要由中国厂商供应。 MLCC技术的一个重要革新是用更稳定的非贵金属(如镍)替代了昂贵的钯等贵金属。传统上,MLCC通常使用Ag/Pd或Pd作为内电极材料,这些金属因其耐高温共烧、低电阻率和高熔点等特点而被广泛采用,非常适合于MLCC生产。 然而,在近年来随着贵金属价格持续上涨以及对大容量化的需求增加(这要求不断增多的叠层层数),随之而来的是内部电极数量的增长。因此,内电极成本已经成为制约MLCC进一步发展的关键因素之一。
  • 直插式 1.PcbLib
    优质
    直插式铝电解电容PcbLib是一款专为电路板设计和制造人员开发的元件库文件。它提供了详细的技术规格和模型,便于在PCB设计中集成高质量、高可靠性的铝电解电容器。 本封装库包含3个直插铝电解电容的封装:脚距1.5mm、直径4mm、高度8mm的蓝色;脚距1.5mm、直径4mm、高度8mm的黑色;以及脚距1.5mm、直径4mm、高度8mm的金色。此外,还包括对应的3D Body模型。
  • 式压力传感简介
    优质
    陶瓷电容式压力传感器是一种利用陶瓷材料作为介质,通过测量电容器因外部压力变化导致的距离改变来检测压力值的精密仪器。 陶瓷电容压力传感器的使用说明及参数性能如下: 本部分将详细介绍如何正确使用陶瓷电容压力传感器,并提供其主要的技术规格与性能指标。 请按照制造商提供的说明书进行安装和操作,确保设备正常运行并达到预期效果。在使用过程中,请注意查阅产品手册以获取详细的参数信息和技术支持详情。