Advertisement

Matlab_PID_Controller_Code(MATLAB中的PID控制器代码)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
简介:本资源提供一套在MATLAB环境下实现的PID控制器代码,适用于控制系统的仿真与设计。包含PID参数整定及性能分析功能。 PID Controller MATLAB Code包含了完整的MATLAB代码用于实现PID控制器。通常情况下使用Simulink来模拟PID控制器,但这些文件是通过Matlab代码运行的。将文件解压到工作目录并运行文件PID_ctrl_call.m。可以在文件PID_ctrl.m中调整PID参数,观察其变化效果。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Matlab_PID_Controller_CodeMATLABPID
    优质
    简介:本资源提供一套在MATLAB环境下实现的PID控制器代码,适用于控制系统的仿真与设计。包含PID参数整定及性能分析功能。 PID Controller MATLAB Code包含了完整的MATLAB代码用于实现PID控制器。通常情况下使用Simulink来模拟PID控制器,但这些文件是通过Matlab代码运行的。将文件解压到工作目录并运行文件PID_ctrl_call.m。可以在文件PID_ctrl.m中调整PID参数,观察其变化效果。
  • MATLABPID
    优质
    本段代码展示了如何在MATLAB中实现和仿真PID控制器,适用于自动控制系统的教学与研究。 PID控制器是一种广泛应用于各种控制系统中的常用设备。它由比例(P)、积分(I)以及微分(D)三个部分组成。在本例中,我们将构建并模拟一个简单的PID控制器的应用场景。假定我们所处理的系统是一个一阶系统,并且它的传递函数可以表示为1/(s+1)的形式。 接下来,我们需要设定PID控制器的相关参数(Kp, Ki, Kd),之后创建出一个名为C的PID控制器以及一个代表上述系统的P对象。通过使用反馈机制将这两者结合在一起,我们构建了一个闭环控制系统。最后一步是利用阶跃响应函数对这个系统进行模拟,并绘制出其随时间变化的趋势图。 在这一过程中,调整Kp、Ki和Kd的具体数值能够帮助观察到它们是如何影响整个系统的性能表现的。
  • PIDMATLAB - 使用Arduino电机PID: Motor-PID-Controller-using-Arduino-Matlab
    优质
    本项目提供了一个使用MATLAB和Arduino实现电机PID控制的完整解决方案。通过编写PID控制器的MATLAB代码,可以有效调整电机运行参数,确保其稳定高效工作。 PID控制器代码MATLAB使用Arduino 硬件要求: - Arduino Uno - 电机双H桥L298驱动器 - 带编码器的金属直流减速电机 软件要求: Matlab R2016a+ 如何使用: 编辑Matlab代码(PIDController.m)中的COMPORT并运行GUI: ```matlab handles.s = serial(COM5); ``` 输入P,I,D和目标速度(以RPM为单位),然后点击发送更新P,I,D值。系统会开始显示响应信息,并且电机将根据设置的PID参数进行工作。 注意事项: - 点击“发送”后电动机将会启动并移动。 - 当停止电机时(例如用布遮住电机使其无法转动), 电机应尝试克服阻力继续运转以测试PID效果。 - 根据P,I和D值的不同设置,可以获得不同的系统响应特性。 为了更好地理解Arduino代码中的PID算法原理,请观看相关视频教程。 以上是使用MATLAB与Arduino实现简单电机PID控制的基本步骤说明。
  • PID设计MATLAB-Self_Driving_Car_Simulation_In_MATLAB:Self_Driv...
    优质
    这段MATLAB代码用于在模拟环境中为自动驾驶汽车设计并实现PID控制器。通过调整PID参数,优化车辆在不同驾驶条件下的性能和稳定性。 该存储库包含一系列用于MATLAB中的自动驾驶汽车仿真的项目。这些仿真主要关注控制、传感器融合、状态估计以及定位等方面。 1. 在MATLAB/SIMULINK中对车道保持辅助系统的模拟:该项目运用计算机视觉技术和控制原理来模拟SIMULINK环境中自动驾驶车辆的车道保持功能。在Simulink中,使用计算机视觉工具箱检测道路边界,并通过PID控制器使汽车沿着车道线行驶。首先将相机捕获的画面转换为HSV色彩空间,接着对S通道进行阈值处理以突出显示车道线。然后应用投影变换技术来获得二进制图像的鸟瞰视图,最后利用Simulink用户定义功能中的2D点云分析仪来检测左右道路边界。 2. 设计用于跟踪任务的PID控制器:通过调整参数确保车辆能够精确地遵循预定路径进行导航。 3. 混合自动机设计:该部分实现了汽车的动力学特性,其中包含一个使汽车避开地图上障碍物并驶向指定目标位置的PID控制算法。汽车及其控制器的相关动力学模型均以面向对象的方式在MATLAB中的Car.m文件中实现。此外,还包括运行车辆模拟程序以及生成用于演示仿真的GIF动画的主要功能模块。 每个子项目都包含相应的代码和文档来支持上述描述的功能,并且这些内容被组织成独立的目录结构以便于访问和理解。
  • PIDMATLAB-自适应巡航(AdaptiveCruiseControl)
    优质
    本项目提供基于MATLAB的PID控制器代码,用于实现自适应巡航控制系统。通过调整参数优化车辆在不同路况下的自动跟车性能。 本段落概述了在MATLAB环境中使用PID控制器实现自适应巡航控制系统的代码设计与应用方法。通过Faster R-CNN技术结合KITTI数据集中的视频资料来识别高速公路上的车道线、汽车及交通信号灯等元素,同时利用多种图像处理和相机校准手段以确定检测到的物体在三维空间相对于本车的位置信息。 此外,在MATLAB SIMULINK框架内实现了一个基于PID控制系统的模型,该系统能够执行具备车道保持功能的现代巡航控制系统。为了验证其性能与鲁棒性,还应用了信号时态逻辑规范来进行模型检查和测试。 要启动此代码,请在Matlab 2020中创建一个新的项目,并导入相关文件。主要运行程序位于MP1_b_source文件夹中的ACCBreach_MP1_b.m文件内。带有MP1_a标识的所有文档主要用于本车的PID控制器设计,而MP1_b_source目录下的其他资源则与视觉系统协同工作,共同驱动基于Faster R-CNN算法实现的PID控制系统。 该模型通过使用专为公路驾驶准备的KITTI数据集进行训练和校准。
  • PIDMATLAB-PID_Kalman: PID与卡尔曼结合
    优质
    本项目提供了一个将PID控制算法与卡尔曼滤波器相结合的MATLAB实现示例。通过集成这两种技术,可以显著提升系统的动态响应和稳定性,尤其适用于需要精准控制且存在噪声干扰的应用场景。代码库包括详细的注释和案例演示,帮助用户快速理解和应用该方法。 该项目是在Arduino Uno上实现PID-LQR控制器的总和。它通过位置测量来工作,并使用卡尔曼滤波器估计速度和电流值。由于这是一个具有三个内部变量但仅有一个输出(即位置)的系统,因此方程式已被调整以适应此应用并优化处理时间。 对于PID增益K_P、K_I 和 K_D 的计算,在连续时间内完成这些计算后会转换为离散时间使用。目标是在100%振幅的情况下达到120毫秒的目标到达时间。 LQR(线性二次型调节器)的增益是通过导入系统的状态空间表示,然后利用Matlab中的lqr函数来确定每个内部变量的值。 卡尔曼滤波部分采用了特定设置:估计误差Q为所有变量设定为0.02,位置测量误差R设为0.1。同时使用了3x1参数H=[1 1 1]以简化多个方程,并直接在代码中隐含这些变化。该过程基于先前的值计算X向量(电流[A];速度[rad/s];位置[rad])和附加变量P,后者用于累加之前假设中的误差。接着计算三个变量各自的卡尔曼增益K。最后脚本会预测下一个LQR控制器使用的X值。
  • MATLABPID仿真.zip
    优质
    本资源提供了一个在MATLAB环境下进行PID控制器仿真的完整案例,适用于自动控制理论学习与实践。包含PID参数调整及系统响应分析等内容。 本段落介绍了PID控制器的MATLAB/Simulink仿真以及性能比较与分析,并提供了最新升级版框架的Simulink文件。该资源涵盖了从MATLAB2015a到2020a共11个版本的文件,可以说内容相当全面。
  • PID设计MATLAB-Nicols方法:pid_controller
    优质
    这段代码使用MATLAB实现基于Nicols准则的PID控制器设计。通过该程序,用户可以优化比例、积分和微分参数,以获得更佳的控制系统性能。 PID控制器设计的Matlab代码使用了尼科尔方法进行PID控制系统的参数调整。