本文详细解析了OMAPL138处理器的启动流程,涵盖了从上电到操作系统初始化的各项步骤和技术细节。适合嵌入式系统开发者参考学习。
OMAPL138是一款基于德州仪器(Texas Instruments)DaVinci架构的低功耗双核嵌入式应用处理器。它采用非对称多核设计,包括一个主频为300MHz的ARM9内核与一个同样为主频300MHz的C6748数字信号处理(DSP)内核,并且两者均基于32位架构。
OMAPL138的一大特点是其内存映射方式和中断机制不同于传统的ARM及DSP处理器,此外它还拥有一种独特的能源管理模块——PSC。接下来将详细介绍这款芯片的启动步骤及相关软件开发环境:
一、内存映射:在OMAPL138中,外设与存储器采用统一地址空间设计,使得4GB范围内的所有资源都能被ARM和DSP访问到。然而,并非所有的区域都是同时对两者开放——某些仅限于DSP的使用(如数据指令缓存),而另一些则仅供ARM使用(例如内部RAM)。这种设置确保了两个处理器之间可以有效共享内存的同时保持各自独立的空间。
二、中断处理:为了实现双核之间的通信,OMAPL138设计了一套独特的中断机制。在达芬奇架构下,并没有为DSP与ARM核心提供直接的通讯指令;取而代之的是通过7个可触发的互发信号来完成任务交换和数据传输。
三、能源管理:PSC模块负责整个系统的电源管理和节能配置,包括控制各个处理器内核及外围设备的工作状态(启用或休眠)。因此,在启动过程中以及后续的操作中都需要依据此模块进行相应的设置调整。
OMAPL138的启动流程可以分为几个关键步骤:
1. 上电自检:系统上电后会通过BOOT配置寄存器来确定具体的启动模式。
2. DSP初始化:首先,DSP内核开始运行,并从其内部ROM加载初始指令执行一系列的基础设置操作。
3. ARM激活:在完成初步的准备工作之后,DSP将使用PSC模块唤醒ARM内核并进入休眠状态。此时,ARM会继续通过本地内存中的引导程序启动。
4. U-Boot加载:随后,由ARM上的ROM Bootloader根据BOOTCFG寄存器读取U-Boot Loader (UBL),后者通常存储在Nandflash或经串口传输的文件中,并使用AIS格式而非标准BIN格式进行封装。
5. 启动U-Boot及Linux系统:UBRL加载完毕后,会进一步初始化并启动主引导程序(U-Boot)。之后,根据设定好的参数开始装载和运行Linux操作系统及其根目录结构。
6. Linux环境下DSP与ARM交互:一旦Linux环境搭建完成并且进入稳定状态,则可以通过DSPLink库函数来实现对DSP内核的控制及数据交换。这包括加载应用程序到内存并通过PROC服务启动执行。
开发者在开发基于OMAPL138的应用程序时,通常需要借助一系列软件工具包(SDK)和集成开发环境(IDE)。这些资源由TI提供,并且包含了必要的驱动、实用函数以及用于编码的库文件等组件。通过利用上述设施,工程师能够编写出高效的DSP端操作系统及应用程序。
总体而言,理解OMAPL138复杂的启动流程对于深入进行嵌入式系统的底层设计至关重要。该过程涉及到诸如PSC模块管理、ROM引导程序执行等一系列关键环节,并最终实现了从硬件初始化到软件平台搭建的完整链路。