《矩阵分析》由史荣昌编著,全面介绍了线性代数与矩阵理论的基础知识及其应用。本书适合数学及相关专业学生及研究人员参考学习。
矩阵分析是数学中的一个重要分支,它是线性代数的深化与扩展。在这一领域内,涵盖了众多基础概念及定理,包括但不限于:线性空间、线性变换、特征值与特征向量、相似变换、Jordan标准形、谱理论、Kronecker积等高级主题。
在线性空间的概念中,一组满足加法和数乘运算的向量集合构成了这一学科的基础。它必须符合封闭性质及一系列代数法则,如结合律和交换律,并且存在单位元与逆元素以及分配律。线性子空间、变换及其矩阵表示是理解这些概念的关键内容。
相似变换在矩阵理论中占据重要位置,其核心在于如何通过特征值和特征向量将一个给定的矩阵转换为更易分析的形式。当无法对角化时,则考虑Jordan标准形的应用。复数域上的每个方阵都能找到与其相似的标准形式——即Jordan形。
内积空间的概念引入使线性代数的研究视角从几何转向度量,涵盖了Schmidt正交化方法、酉变换和Hermite矩阵等关键内容。后者是自伴的复杂方形矩阵,其共轭转置与自身相等,在该理论中扮演着重要角色。
矩阵分解作为理解及应用矩阵的重要工具之一,包括满秩分解、QR分解(即正交三角形)、奇异值分解、极分解和谱分解等多种方法。这些技术在数值分析、信号处理等多个领域具有广泛应用价值。
范数的引入为量化矩阵大小提供了标准手段,涵盖了向量与矩阵的各种形式以及算子范数等概念。此外还涉及了序列极限理论及幂级数的概念,在矩阵分析中占据重要地位。
函数矩阵和微分方程章节探讨了函数对纯量求导、积分操作以及线性相关性的定义,将研究视角从静态扩展至动态系统模型的连续时间框架内。这些概念对于处理控制论中的问题至关重要。
广义逆矩阵在解决非正方形阵列的线性方程组时非常有用,在数据处理和经济学等领域具有广泛应用价值。此外,Kronecker积作为一种特殊的矩阵运算方式,其特征值、列展开与行展开等特性在工程学中有着重要的应用背景。
《矩阵分析》一书是该领域的权威著作之一,不仅对现代数学研究有重要影响,在工业界的应用也十分广泛。无论是学术还是实际操作层面都具有极高的参考价值。