Advertisement

十种常见的排序算法(以Java语言进行实现)。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
十大常用的排序算法,包括Java语言的实现,例如冒泡排序和简单选择排序等。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Java
    优质
    本篇文章详细介绍了使用Java语言实现的十种常用的排序算法,包括它们的工作原理、代码示例以及性能分析。 十大常用的排序算法包括冒泡排序和简单选择排序等多种方法的Java实现。
  • 10滤波(C
    优质
    本文章介绍了十种常用的数字信号处理中的滤波算法,并提供了每种算法在C语言中的具体实现方法。适合希望深入了解信号处理技术的读者参考学习。 限幅滤波法(又称程序判断滤波法)是一种常用的技术手段: 1. 方法:依据经验设定两次采样之间的最大允许偏差值A;每次采集新数据后进行比较,如果本次与上次之差小于或等于A,则认为当前值有效;否则该次无效,并用上一次的有效值替代。 2. 优点:能有效地消除由偶然因素导致的脉冲干扰现象。 3. 缺点:无法抑制周期性干扰且平滑度较差。 中位数滤波法: 1. 方法:连续采样N(奇数)个数据,将这些数值排序后取中间值作为最终结果。 2. 优点:可以有效应对波动性的随机干扰,并适用于温度、液位等变化缓慢的参数测量。 3. 缺点:不适合快速变化的数据如流量和速度。 算术平均滤波法: 1. 方法:连续选取N个样本进行求均值得到新的值,其中N的选择依据具体应用而定(例如对于压力信号可选4)。 2. 优点:适用于具有随机干扰的一般性信号处理,此类信号通常有稳定的基础数值并在此基础上波动变化。 3. 缺点:不适宜于测量速度慢或需要实时计算的场景,并且会消耗较多内存。 递推平均滤波法(滑动平均滤波): 1. 方法:采用固定长度为N的数据序列作为队列,每次新采样值加入尾部并移除头部旧数据;然后对当前窗口内的所有数值求均值得到新的结果。 2. 优点:具备良好的周期性干扰抑制效果以及高的平滑度,并适用于高频振荡系统。 3. 缺点:灵敏度较低且难以完全消除脉冲干扰的影响,不适合在高脉冲环境使用。 中位数平均滤波法(防脉冲干扰平均): 1. 方法:结合了“中位值滤波”与“算术平均”的特点,在连续采样N个数据后去除一个最大和最小值后再求均值得到最终结果。 2. 优点:能够有效地应对偶然出现的脉冲性干扰,消除其对测量准确性的影响。 3. 缺点:由于需要处理更多样本数量导致计算速度较慢,并且同样会消耗较多内存资源。 限幅平均滤波法: 1. 方法:先通过“限幅”步骤限制数据范围然后进行递推平均运算以获得最终结果。 2. 优点:结合了两种方法的优点,特别适合于消除脉冲干扰引起的偏差问题。 3. 缺点:较高的计算成本(内存消耗)。 一阶滞后滤波法: 1. 方法:通过调整参数a (0到1之间) 来生成新的过滤值,每次更新时采用新采样值与之前处理结果的加权平均得到当前输出。 2. 优点:对周期性干扰具有良好的抑制效果,并适用于波动频率较高的系统应用场合。 3. 缺点:存在相位延迟问题且灵敏度较低;同时不能有效滤除高于采样率一半以上的噪声信号。 加权递推平均法: 1. 方法:为不同时间的数据赋予不同的权重值,通常近期数据的比重会更大一些。然后通过计算这些加权后的均值得到新的输出。 2. 优点:对于变化缓慢的目标参数具有较好的滤波效果;可以避免临界点附近的控制器频繁切换或显示数值波动现象。 3. 缺点:不适用于快速变动的数据环境,并且在处理突发性干扰时表现不佳。 消抖滤波法: 1. 方法:设置一个计数器,用于比较每次采样值与现有有效值;如果两者一致则重置计数器;否则增加计数值直至达到上限N(溢出)。 2. 优点:对于变化缓慢的目标参数具有较好的过滤效果,并能避免临界点附近的控制器频繁切换或显示数字跳动现象。 3. 缺点:不适用于快速变动的数据环境,且有可能将干扰值误判为有效数据并引入系统中。
  • 及其C
    优质
    本文章介绍了几种常见的内排序算法,包括但不限于冒泡排序、插入排序、选择排序、快速排序等,并提供了每种算法对应的C语言代码示例。通过详细的步骤解释和源码解析帮助读者更好地理解和应用这些经典排序方法。适合初学者入门学习及实践使用。 主要的内排序方法包括冒泡排序、插入排序、希尔排序、堆排序、归并排序、快速排序和桶排序等。本源码用C语言实现了这些算法,并进行了简单的测试,可以准确运行。所有算法源码以及测试主程序都在main.c文件中。
  • Java快速
    优质
    本简介探讨了如何使用Java编程语言来实现高效的快速排序算法。通过递归方法将数组分区,并对分区进行排序,最终实现整个数组的有序排列。此文章适合学习数据结构与算法的学生及开发人员参考。 Java实现的快速排序算法是一种高效的排序方法,它采用分治策略来把一个序列分为较小和较大的两个子序列,然后递归地排序两个子序列。 以下是使用Java语言编写的一个简单的快速排序例子: ```java public class QuickSort { public static void main(String[] args) { int arr[] = {10, 7, 8, 9, 1, 5}; sort(arr); System.out.println(Sorted array :); printArray(arr); } // 快速排序方法 public static void sort(int arr[]) { quickSort(arr, 0 ,arr.length - 1); } private static void quickSort(int[] arr, int low, int high) { if (low < high) { /* pi 是分区后的基准元素的索引 */ int pi = partition(arr, low, high); // 分别对基准元素左右两边进行快速排序 quickSort(arr , low , pi - 1); quickSort(arr , pi + 1, high); } } private static int partition(int[] arr, int low, int high) { int pivot = arr[high]; // 基准元素为数组最后一个元素 int i = (low - 1); // 小于基准的索引 for (int j = low; j < high; j++) { if (arr[j] <= pivot) { i++; // 交换 arr[i] 和 arr[j] swap(arr, i, j); } } // 最后,将基准元素与大于它的第一个元素进行交换 swap(arr , i + 1 , high); return i+1; } private static void swap(int[] array, int indexOne, int indexTwo) { int temp = array[indexOne]; array[indexOne] = array[indexTwo]; array[indexTwo] = temp; } // 打印数组 public static void printArray(int arr[]) { for (int i=0; i < arr.length; ++i) System.out.print(arr[i]+ ); System.out.println(); } } ``` 以上代码展示了如何使用Java实现快速排序算法,包括分区操作和递归的子数组排序。
  • MATLAB14集合
    优质
    本书汇集了使用MATLAB编程实现的14种常用算法,旨在为读者提供解决实际问题的有效工具和方法,适用于学习与参考。 MATLAB语言常用算法14类程序集先看是否需要再下载。具体内容可参考相关文章了解详情。
  • Java演示
    优质
    本视频深入浅出地讲解并展示了Java编程语言中常见的几种排序算法,包括但不限于冒泡排序、插入排序、选择排序、快速排序等,适合初学者理解和学习。 在编程领域内,排序算法是计算机科学中的核心概念,在数据结构与算法分析方面尤为重要。作为广泛使用的编程语言之一,Java提供了实现各种排序算法的丰富工具和技术。本段落将深入探讨常用排序算法及其Java实现方式,并介绍这些算法的实际应用中图形演示的相关知识点。 首先来看几种常见的排序方法: 1. **冒泡排序(Bubble Sort)**:这是一种简单的交换排序法,通过多次遍历数组并在每次遍历时比较相邻元素并按需进行交换。在Java语言中,冒泡排序的基本实现思路是使用两个嵌套循环结构——外层控制总的迭代次数,内层则负责每轮的对比与调换。 2. **选择排序(Selection Sort)**:此方法的工作原理是在每次遍历过程中寻找未排序部分中的最小元素,并将其放置在数组最开始的位置。Java实现时通常采用一个外部循环来确定总的操作次数,内部循环用于定位当前未排列表中最小值并执行交换操作。 3. **插入排序(Insertion Sort)**:这种方法将数据集划分为已有序的部分和无序部分,每次从无序区取第一个元素放入有序区域的适当位置。在Java编程语言里实现时通常采用双指针策略——一个指向未排列表的第一个元素,另一个则用于遍历已排序序列以找到合适的插入点。 4. **快速排序(Quick Sort)**:这是一种由C.A.R.Hoare提出的基于分治法思想的高效算法。它通过选取基准值将数组分成两部分,并确保左侧的所有元素都小于右侧所有元素;接着对这两半继续进行递归操作直至完成整个数组的排序过程。 5. **归并排序(Merge Sort)**:该方法同样遵循分而治之策略,首先将原始序列一分为二直到每个子集仅包含一个元素为止。然后通过合并这些有序片段来重建完整的已排列表,这通常需要递归函数和额外的空间开销来进行。 6. **堆排序(Heap Sort)**:此算法利用了大顶堆或小顶堆的特性进行高效排序操作;每次将根节点与数组末尾元素交换并重新调整剩余部分为新的堆结构。在Java中,可以使用`PriorityQueue`类来简化实现过程。 7. **计数排序(Counting Sort)、桶排序(Bucket Sort)和基数排序(Radix Sort)**:这些非比较型算法不需要直接对数据进行大小对比就能完成任务,而是根据特定属性如数值范围或分布特性来进行操作。在Java中执行这类算法时通常需要设计额外的数据结构与逻辑。 “常用排序算法java演示”项目可能通过可视化手段展示不同排序方法的具体步骤及效果变化过程,这对于学习者来说非常有帮助。图形化演示可以直观地展现数据元素如何移动和重新排列的过程,有助于加深对这些复杂概念的理解。 在实际应用中选择适当的排序策略需考虑多个因素如输入规模、初始状态(是否部分有序)、性能需求等;例如对于小量级的数据集冒泡或插入排序可能足够有效;而对于大量级数据则推荐使用快速排序、归并排序或者堆排序。同时,算法的稳定性及空间与时间复杂度也是评价其优劣的重要标准。 掌握各种常见的排序技术不仅能够增强编程技能而且有助于提高程序效率和性能表现。通过在Java环境中实现这些算法,并结合图形化演示工具可以显著提升学习效果以及对核心概念的理解深度。
  • C++:插入、冒泡、选择、希尔
    优质
    本篇文章详细介绍了并实现了八种常见的排序算法,包括但不限于插入排序、冒泡排序、选择排序和希尔排序,使用了C++编程语言进行代码展示与解释。适合初学者学习理解各种基础的排序方法及其应用。 本段落主要介绍了C++实现的八种常用排序算法:插入排序、冒泡排序、选择排序、希尔排序、快速排序、归并排序、堆排序以及LSD基数排序。有兴趣的朋友可以参考这些内容。
  • 用C基本
    优质
    本教程详细介绍并实现了五种经典的C语言排序算法:冒泡排序、插入排序、选择排序、快速排序和归并排序,适合编程初学者学习与实践。 使用Code::Blocks工具通过C语言实现物种排序方法。从最基本的冒泡排序与选择排序开始,再到数据结构课程中学到的插入排序、快速排序以及希尔排序。
  • 滤波在C(filter.c)
    优质
    本文章介绍了几种常用的滤波算法,并详细讲解了如何使用C语言进行实现。代码文件为filter.c,适用于需要信号处理和数据平滑的应用场景。 在嵌入式开发过程中常常需要用到各种滤波算法。我整理了一些资料,并将这些算法封装成了可以直接调用的函数,以便于今后的项目开发使用。具体包括限幅滤波、中位值滤波法、算术平均滤波法、一阶滞后滤波法、加权递推平均滤波法和消抖滤波法等。对于卡尔曼滤波及其他相关算法,则计划在后续有机会时再进行整理封装。
  • MATLAB集合-MATLAB集合.rar
    优质
    本资源包含多种使用MATLAB编写的常见算法程序,适用于学习和研究。内容涵盖数学计算、数据处理及图形绘制等领域,便于初学者快速上手与高级用户深入探索。 MATLAB语言常用算法程序集-MATLAB语言常用算法程序集.rar包含了MATLAB语言的常用算法程序集。