Advertisement

针对微环谐振腔的调谐滤波器进行研究。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
采用深紫外光刻技术以及等离子体刻蚀工艺,成功制备了基于绝缘体材料上硅材料的环形滤波器,其微环半径仅为5微米。此外,还实现了基于单个微环的四通道光分插复用器的制备,该器件的尺寸仅为3000微米乘以500微米。实验结果显示,该器件能够有效地实现上行下载功能。其自由频谱宽度约为19.6纳米,最大消光比达到了19.76分贝。与此同时,对设计进行了优化,从而制备出基于跑道型双微环的可调谐光分插复用器。对这两种结构的光分插复用器的相邻信道间串扰进行了测试,并发现基于单微环滤波器的信道间最大串扰为-11.94分贝,而基于跑道型双微环滤波器的信道间最大串扰则为-20.04分贝。值得注意的是,所设计的基于双微环的光分插复用器上行通道与主信道之间没有采用交叉波导结构,因此相邻通道间的串扰明显低于单环型的光分插复用器。同时,还设计并成功制备了一种基于双微环PIN结型电光调制器。实验表明,当偏置电压提升至1.6伏特时,谐振峰发生了0.78纳米的蓝移现象,并对这些测试结果进行了详细的分析与研究。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 关于
    优质
    本研究聚焦于微环谐振腔可调谐滤波器的设计与优化,探讨其在光通信中的应用潜力及性能提升方法。 采用深紫外光刻及等离子体刻蚀工艺制备基于绝缘体上硅材料的环形滤波器,并且微环半径仅为5 μm。利用单个微环制作了4 通道的光分插复用器,其尺寸为3000 μm×500 μm。测试结果显示,该器件能够很好地实现上下数据传输功能;自由频谱宽度约为19.6 nm,最大消光比达到19.76 dB。 此外,设计并制备了基于跑道型双微环的可调谐光分插复用器,并对其与单微环滤波器之间的相邻信道串扰进行了测试。结果显示:基于单微环和跑道型双微环的信道间最大串扰分别为-11.94 dB 和-20.04 dB,可见采用双微环结构可以显著降低相邻通道间的干扰。 设计并制造了基于双微环PIN 结构的电光调制器。当偏置电压增加至 1.6 V时,观测到谐振峰发生了约0.78 nm 的蓝移现象,并对实验结果进行了分析。
  • 矩形分析-MATLAB开发:
    优质
    本项目利用MATLAB进行微波矩形谐振腔的仿真与分析,旨在深入探究其电磁特性及应用潜力。通过精确计算和模拟,为相关领域的理论研究和技术开发提供有力支持。 这段代码的目的是研究微波矩形谐振腔的概念:计算共振频率、共振波长;TE模式和TM模式下归一化场分布;空腔品质因数(包括由空腔内介质决定的因素及壁损耗产生的因素)以及外部性能指标,并分析负载的优点因子。
  • 基于湿度传感技术
    优质
    本研究聚焦于利用微波谐振腔技术进行湿度检测的方法与应用探索,旨在提升传感器灵敏度及精确度。 ### 基于微波谐振腔的湿度传感器 本段落介绍了一种基于微波谐振腔技术设计的湿度传感器及其工作原理。该湿度传感器利用了微波信号在含有水分混合物中的传播特性变化来测量湿度,具体通过构建含水混合物介电特性模型来设计开路同轴谐振腔传感器。研究发现,保护盖材料的介电常数和空载状态下的谐振频率是影响传感器性能的关键因素。 #### 含水混合物介电特性模型 含水混合物的介电特性对于湿度传感器的设计至关重要。根据该模型,物料可以被近似为由空气、干燥物料以及纯水组成的三部分混合物。这三种成分的复介电常数可以通过它们各自的比例加权平均得出: \[ ε_3 = \frac{V_A}{V} + \frac{m_D}{V\rho_D}\varepsilon_{3D} + \frac{m_W}{V\rho_W}\varepsilon_{3W} \] 其中,\( V_A \) 表示混合物中空气的体积; \( V \) 是总体积; \( m_D \) 和 \( m_W \) 分别表示干燥物料和水的质量; \( \rho_D \) 和 \( \rho_W \) 分别是干燥物料和水的密度;\( ε_{3D} \) 和 \( ε_{3W} \) 分别代表干燥物料和纯水的复介电常数。 #### 开路同轴谐振腔传感器设计 为了实现湿度测量功能,研究者根据上述介电特性模型设计了开路同轴谐振腔传感器。该传感器通过检测介质材料中水分变化引起的介电常数的变化来反映湿度变化。在设计过程中需要考虑的主要参数包括保护盖的介电常数和空载状态下的谐振频率。 - **保护盖材料选择**:用于封装传感器以防止外部环境干扰,其材质的选择直接影响到传感器的灵敏度与稳定性。 - **空载谐振频率**:指没有物料时腔体固有的振动频率。这一参数对于提高传感器分辨率及准确性至关重要。 #### 仿真和实验分析 研究中进行了全面的模拟和测试,评估了不同保护盖材料以及空载状态下的谐振频率对湿度传感器性能的影响。结果显示,在选用Al2O3作为保护盖材质,并将空载谐振频率设定为2.5 GHz时,该设计表现出最佳测量效果。 - **保护盖材料选择**:Al2O3(氧化铝)因其良好的化学稳定性和低介电损耗被选作传感器的保护层。这种材料不仅耐高温而且能提高传感器稳定性。 - **空载谐振频率设定**:将空载状态下的谐振频率设为2.5 GHz可以确保高灵敏度及良好线性度,从而提供更精准的数据。 #### 实验验证 为了证明理论模型的有效性,研究团队制造了不同谐振频率的微波谐振腔和多种材料制成的保护盖。实验结果表明所提出的湿度传感器设计能够准确测量,并且当使用Al2O3作为保护层以及设定空载状态下的谐振频率为2.5 GHz时,其表现最佳。 #### 结论 基于微波谐振腔技术开发出的湿度传感器是有效监测水分含量的一种工具。通过研究含水混合物介电特性模型,并结合模拟与实验分析,研究人员成功设计了一款性能优异的湿度传感器。选择合适的保护盖材料(如Al2O3)和优化空载状态下的谐振频率(例如2.5 GHz),可以显著提高测量精度及稳定性。这种湿度传感器有望在农业、林业以及石油工业等领域得到广泛应用。
  • 关于利用生成光频梳中色散
    优质
    本研究聚焦于微环谐振腔内光频梳的产生技术,特别关注通过调控色散效应来优化性能的方法,概述了最新的研究成果与挑战。 随着人们对通信容量需求的增加,基于微环谐振腔产生的光频梳能够很好地满足现代通信系统对光源的需求。光频梳具有宽广的光谱范围、高相干性和集成化等优点,由于其生成机制依赖于四波混频效应,因此要求微环谐振腔具备严格的色散特性。 本段落总结了当前几种调控微环谐振腔色散特性的最新研究方法,包括调整微环宽度以及结合slot结构和光子晶体结构的方法。文中对比分析了几种不同方案的优缺点及性能表现,并对进一步优化微环谐振腔的色散曲线提出了展望。例如,通过组合使用微环与光子晶体结构,在较小的光谱范围内实现更佳的色散特性,从而提高四波混频效率。
  • _HFSS.zip
    优质
    本资源包提供了关于使用HFSS软件进行谐振腔设计与分析的教程和实例文件,适合电磁学及微波工程领域的学习者和研究者参考。 该资源讲解了HFSS仿真软件的一个设计实例,并详细介绍了谐振器的理论知识,在此基础上使用HFSS软件进行了仿真分析。
  • MATLAB中
    优质
    本教程深入介绍在MATLAB环境中如何建模与分析光学谐振腔,涵盖理论基础、仿真技巧及应用实例。 在光学谐振腔设计中,MATLAB提供了强大的工具和支持,帮助研究人员进行复杂的计算和模拟工作。通过使用MATLAB,可以方便地实现对不同参数的调整与优化,并且能够快速得到准确的结果,从而加速了科研进展的步伐。此外,其图形界面使得用户能直观地观察到各种模型的表现情况,在实验设计阶段提供了极大的便利性。总之,对于从事光学谐振腔相关研究的人来说,掌握MATLAB无疑是一个非常有价值的技能。
  • LCL分析
    优质
    本文探讨了LCL滤波器的谐振特性及其影响因素,并对如何避免或利用这些特性进行了深入分析。 LCL谐振分析及解决方法的体会:探讨常见谐振问题的应用背景及其一般分析方法。
  • CLLC双向变换和PI闭控制仿真:涵盖准、欠及ZVS形分析
    优质
    本文探讨了CLLC双向谐振变换器在准谐振、欠谐振模式下的性能,并通过开环与基于PI控制器的闭环系统进行仿真,深入分析了软开关(ZVS)工作条件。 本段落对CLLLC双向谐振变换器的开环与PI闭环控制进行了仿真研究,并分析了准谐振、欠谐振及零电压开关(ZVS)波形的特点。在正反向运行情况下,分别完成了变频控制下的开环和闭环模拟实验以及ZVS验证。 关键词包括:CLLLC双向谐振变换器;变频控制;开环与PI闭环控制策略;准谐振仿真分析;欠谐振仿真实验;零电压开关(ZVS)波形确认;正反向运行的仿真测试。