Advertisement

基于GMM的EM算法的MATLAB实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目采用MATLAB语言实现了基于高斯混合模型(GMM)的期望最大化(EM)算法,适用于聚类分析和概率密度估计。 基于高斯混合模型(GMM)的EM算法在Matlab中的实现方法涉及利用该统计学习技术来解决复杂的聚类问题或密度估计任务。通过迭代地执行期望(E)步骤和最大化(M)步骤,EM算法能够优化参数以适应数据分布,并且非常适合处理具有多个模态的数据集。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • GMMEMMATLAB
    优质
    本项目采用MATLAB语言实现了基于高斯混合模型(GMM)的期望最大化(EM)算法,适用于聚类分析和概率密度估计。 基于高斯混合模型(GMM)的EM算法在Matlab中的实现方法涉及利用该统计学习技术来解决复杂的聚类问题或密度估计任务。通过迭代地执行期望(E)步骤和最大化(M)步骤,EM算法能够优化参数以适应数据分布,并且非常适合处理具有多个模态的数据集。
  • EMGMM
    优质
    简介:EM(期望最大化)算法在估计混合高斯模型(Gaussian Mixture Model, GMM)参数时发挥关键作用,通过迭代优化找到最可能的隐变量分布和模型参数。 这段文字介绍了关于GMM算法的EM实现的相关资料,这些都是我在学习GMM算法过程中整理出来的内容,非常有用。
  • EMGMM分类代码
    优质
    本项目采用期望最大化(EM)算法实现了高斯混合模型(GMM)的分类功能,并提供了详细的代码示例和文档。 EM算法可以用于实现二维混合高斯模型的分类。
  • MATLAB高斯混合模型(GMM)及EM
    优质
    本项目利用MATLAB语言实现了高斯混合模型(GMM)及其参数估计的关键算法——期望最大化(EM)算法。通过实际数据集的应用,验证了该方法的有效性和准确性。 高斯混合模型GMM与EM算法的Matlab实现代码可供用户直接运行并查看结果,欢迎下载后进一步讨论。
  • MATLABEM
    优质
    本项目采用MATLAB编程环境,实现了Expectation-Maximization(EM)算法,用于处理缺失数据和参数估计问题,适用于混合模型分析。 使用MATLAB实现EM(期望最大化)算法涉及编写代码以迭代地估计模型参数。首先需要定义初始参数,并通过E步计算隐变量的期望值。然后在M步中,利用这些期望值来更新模型参数。重复这个过程直到收敛为止。 具体步骤包括: 1. 初始化参数。 2. 执行E步:根据当前的参数估算出数据中的隐藏信息(如缺失的数据点或者未观测到的状态)的概率分布。 3. 进行M步:使用从上一步得到的信息来更新模型参数,最大化期望对数似然函数。 4. 重复步骤2和3直到达到预设的最大迭代次数或满足收敛条件。 实现时需要注意选择合适的初始值以避免陷入局部最优解,并且要确保算法能够正确处理缺失数据的问题。此外,在实际应用中可能还需要考虑计算效率以及如何有效地存储中间结果等问题。
  • EMMATLAB-GMMMATLAB高斯混合模型与推断
    优质
    本文介绍了如何使用MATLAB实现期望最大化(EM)算法以解决高斯混合模型(GMM)的相关问题,包括参数估计和模型推断。 在Matlab环境中实现高斯混合模型(GMM)及其推理算法的EM和变分推理方法,并参考克里斯托弗·毕晓普(Christopher M. Bishop)。2006年出版的《模式识别与机器学习》一书中的相关内容。 该代码已经在Matlab R2017a版本中进行了测试。以下是使用示例: - 使用EM算法运行GMM演示:gmm_em_demo - 采用变分推理方法进行GMM演示操作:gmm_vb_demo
  • EMMATLAB代码-GMM:适用不同形状高斯混合模型EM
    优质
    本资源提供了一个用MATLAB编写的程序,用于实现高斯混合模型(GMM)中的期望最大化(EM)算法。该工具可以处理多种形状参数的GMM,为用户研究和应用提供了便利。 该代码实现了EM算法以适应MATLAB中的高斯混合模型,并使用样本数据进行处理。此数据集包含三个类别,每个类别有1000个观察值;每项观察有两个特征。数据文件将观测作为行显示,其元素为第一和第二列,类标签则在第三列中。 代码中,“class1”代表“蓝色”,“class2”对应于“红色”,而“class3”表示“绿色”。每个类别被分为两组:一组用于训练,另一组用于测试。运行程序时只需执行run.m文件即可开始处理过程。 用户可以调整参数以确定高斯数量和期望最大化的迭代次数。“EM.m”函数通过设置“gaussCase”参数来决定协方差矩阵的类型(球面、对角线或任意)。在主流程之前,初始化混合参数α、mu及sigma值。使用k-means算法计算的聚类中心作为初始μ值;σ则被设定为2x2维恒等矩阵。由于混合参数总和需等于“1”,因此每个组件的alpha(即混合比例)均设为 1/ 组件数量。 初始化所有必要参数后,EM算法开始运行,在每次迭代中进行更新处理。
  • GMMEM
    优质
    GMM(高斯混合模型)是一种概率模型,用于表示复杂分布由多个高斯组件构成。EM(期望最大化)算法则提供了一种估计该模型参数的有效方法,广泛应用于聚类分析和密度估计等领域。 该PDF文档涵盖了网易公开课上吴恩达教授主讲的机器学习课程中的高斯混合模型(GMM)与EM算法相关内容,并补充了Jessen不等式的证明以及GMM似然函数最大化的参数推导公式。
  • KMeans初始化参数PythonEM求解GMM
    优质
    本项目采用Python语言实现了利用K-means算法为期望最大化(EM)算法提供初始值,进而求解高斯混合模型(GMM)的过程。 EM(期望最大)算法用于估计GMM(混合高斯分布)参数,并且可以使用KMeans算法进行参数初始化,基于Python实现。
  • 期望最大化和高斯混合模型MATLAB-GMMEM
    优质
    本项目通过MATLAB实现了GMM(高斯混合模型)及与其密切相关的EM(期望最大化)算法,适用于聚类分析、模式识别等领域。 高斯混合模型的期望最大化算法实现可以用于对20个数据点进行建模,并使用两个高斯分布来进行拟合。