Advertisement

深度学习

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
深度学习是一种人工智能技术,模仿人脑神经网络处理信息的方式,用于识别图像、语音等复杂模式。它通过多层非线性变换自动提取特征,无需人工设计特征,显著提高了机器学习的效果和效率。 《深度学习》一书由三位该领域的专家撰写,是目前唯一全面介绍这一主题的书籍。 深度学习是一种机器学习形式,它使计算机能够通过经验来学习并以概念层次结构的方式理解世界。由于计算机从经验中获取知识,因此不需要人为地为计算机指定所有所需的知识。这种多层次的概念层级使得计算机可以通过构建更复杂的概念来掌握复杂的问题;如果将这些层级关系用图表示出来,则会形成多层的网络。 本书涵盖了深度学习领域的广泛主题,包括数学和理论背景、线性代数、概率论与信息论、数值计算以及机器学习的相关知识。书中还介绍了产业界实践中使用的各种技术方法,如深层前馈神经网络、正则化技术、优化算法、卷积网络及序列建模等,并探讨了自然语言处理、语音识别、计算机视觉和在线推荐系统等多个应用领域。 此外,《深度学习》还涵盖了研究的前沿视角,涉及线性因子模型、自动编码器(Autoencoders)、表示学习(Representation Learning)、结构化概率模型、蒙特卡洛方法(Monte Carlo methods)等理论主题。本书适合希望在产业或学术界从事相关工作的本科生和研究生阅读,同时也适用于想要在其产品或平台中引入深度学习技术的软件工程师使用。书中还提供了额外的学习材料供读者及教师参考。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MATLAB入门指南_never42k__MATLAB_MATLAB_matlab
    优质
    《MATLAB深度学习入门指南》由never42k编写,旨在帮助初学者快速掌握使用MATLAB进行深度学习的基础知识和实践技巧。适合希望利用MATLAB开展深度学习研究与应用的读者阅读。 《MATLAB深度学习简介》是一份详尽的教程,旨在帮助用户掌握使用MATLAB进行深度学习实践与理论研究的方法。作为一款强大的数学计算软件,近年来MATLAB在深度学习领域得到了广泛应用,并提供了丰富的工具箱及直观界面,使研究人员和工程师能够快速构建、训练并优化深度学习模型。 深度学习是人工智能的一个分支,其核心在于创建多层非线性处理单元的大型神经网络模型,通过模仿人脑的学习方式对复杂数据进行建模与预测。在MATLAB中开展深度学习主要涉及以下几个方面: 1. **神经网络构建**:提供一个完整的流程来定义各种类型的神经网络结构(如卷积神经网络CNN、循环神经网络RNN、全连接网络FCN等),配置超参数,选择损失函数和优化器。 2. **数据预处理**:在深度学习中,有效的数据预处理至关重要。这包括归一化、标准化以及数据增强等多种步骤。MATLAB提供了便于使用的函数来执行这些任务,确保模型能够更好地识别并利用数据特征。 3. **模型训练**:支持多种训练策略如批量梯度下降和随机梯度下降等,并允许用户灵活调整学习率、批大小等参数以监控损失函数及准确率的变化情况。 4. **可视化工具**:提供模型可视化的功能,帮助理解网络结构。同时还能展示权重分布与激活图,便于调试优化过程中的问题。 5. **迁移学习和微调**:对于小规模数据集而言,MATLAB支持利用预训练的深度学习模型进行迁移学习,并仅需对最后几层进行调整以适应新的任务需求。 6. **部署与推理**:完成训练后,MATLAB能够将模型应用到嵌入式设备或云平台中实现实时预测功能。 7. **与其他技术结合使用**:通过无缝集成其他如信号处理、图像处理等工具箱的功能,使得深度学习可以解决更为复杂的实际问题。 8. **实例与案例研究**:教程通常包含多个具体的应用场景(例如图像分类、目标检测和自然语言处理),并通过逐步指导帮助用户完成这些项目以加深理解。 通过《MATLAB深度学习简介》这份教程的学习,读者将能够系统地掌握如何在MATLAB环境中设计训练并评估深度学习模型的方法与技术。无论您是初学者还是有经验的开发者都能够从中受益,并提高自己在该领域的专业技能水平。
  • 概览:探索
    优质
    本书《深度学习概览》旨在为读者提供全面而深入的理解深度学习领域的基础知识与最新进展,适合初学者及专业人士阅读。 深度学习是人工智能领域的一个重要分支,它通过模拟人脑神经网络的工作原理来构建多层的非线性模型以处理复杂的数据。“深度学习:深度学习”可能指的是一个全面探讨深度学习理论、方法和技术的资源集合,其中包含用HTML格式呈现的教程或文档。 该主题的核心在于神经网络,这是一种由大量人工神经元(节点)组成并按照层次结构排列的计算模型。每一层都与下一层相连形成复杂网络结构,从而逐步提取数据中的高级特征。 在深度学习中涉及的一些关键概念包括: 1. **前馈神经网络**:最基础类型的神经网络,信号从输入端单向传递到输出端。 2. **卷积神经网络(CNN)**:广泛应用于图像识别和计算机视觉领域,通过卷积层提取图像特征。 3. **循环神经网络(RNN)**:适用于处理序列数据如自然语言的模型,其记忆单元允许信息在时间上流动。 4. **长短期记忆网络(LSTM)**:一种改进版的RNN,解决了传统RNN中的梯度消失问题,并能更好地处理长期依赖关系。 5. **生成对抗网络(GANs)**:由两个部分组成——一个用于创建新数据的生成器和判断这些数据真实性的判别器,常应用于图像生成领域。 6. **深度强化学习**:结合了深度学习与强化学习技术,使智能体在环境中通过试错来寻找最优策略。 7. **反向传播(Backpropagation)**:训练神经网络的主要算法之一,用于计算损失函数关于权重的梯度并更新参数值以优化模型性能。 8. **优化算法**:如随机梯度下降、动量法和Adam等方法,通过调整学习率和其他超参数来加速收敛过程。 9. **损失函数(Loss Function)**:衡量预测结果与实际目标之间差异的标准,常见的包括均方误差(MSE)及交叉熵(Cross-Entropy)。 10. **超参数(Hyperparameters)**:影响模型训练效果但不直接参与学习过程的变量设置,例如网络层数、隐藏单元数量和迭代次数等。 11. **数据预处理**:如归一化或标准化输入特征以提高算法效率及预测准确性。 12. **评估与验证方法**:利用交叉验证或者独立测试集来评价模型泛化的性能。 这些概念在HTML文档中会得到详细解释,并提供实例代码、可视化工具以及实践项目,帮助读者更好地掌握深度学习技术。此外,该资源还可能涵盖各种主流的深度学习框架介绍(例如TensorFlow, PyTorch和Keras),它们极大地简化了构建复杂模型的过程。 总之,“深度学习:深度学习”这一主题覆盖从基础理论到实际应用广泛的内容范围,为希望深入了解并掌握这项前沿技术的人们提供了宝贵的资源。通过交互式的HTML文档形式,读者能够更加深入地探索这个充满挑战与机遇的领域,并逐步建立起对相关知识的理解和运用能力。
  • 概览:探索
    优质
    《深度学习概览》旨在为读者提供一个全面而深入的理解框架,探索深度学习的核心概念、算法及其在各个领域的应用。 深度学习是人工智能领域的一个核心分支,它通过模拟人脑神经网络的工作原理构建多层的非线性模型来解决复杂的数据分析和模式识别问题。“深度学习:深度学习”这一主题着重探讨了深度学习的基本概念、架构、算法以及在Python编程语言中的实现。 一、深度学习基础 深度学习的基础在于人工神经网络(Artificial Neural Networks, ANN),它由输入层、隐藏层和输出层组成。每一层都包含若干个节点,它们之间通过权重连接。深度学习的关键在于增加网络的“深度”,即层数的增多,这使得模型能够捕获更复杂的特征表示。 二、卷积神经网络(CNN) 在图像处理中,卷积神经网络是深度学习的重要支柱。CNN利用卷积层提取局部特征,池化层用于降低数据维度,全连接层则负责分类任务。LeNet、VGG、GoogLeNet和ResNet等著名的CNN架构,在图像识别与物体检测等领域取得了显著成果。 三、循环神经网络(RNN) 对于序列数据如文本和音频,循环神经网络能够处理时间上的依赖关系。RNN的隐藏状态会根据输入序列动态更新,LSTM(长短时记忆网络)和GRU(门控循环单元)是改进版本,解决了梯度消失与爆炸的问题。 四、生成对抗网络(GAN) GAN是一种无监督学习方法,由生成器和判别器构成。通过博弈理论训练模型来生成高度逼真的新样本。DCGAN、CGAN和ProGAN等常见的GAN变体广泛应用于图像生成和修复任务中。 五、强化学习 在深度学习领域,强化学习与Q学习、DQN(深度Q网络)、A3C(异步优势演员评论家)相结合,让智能体通过环境交互来学习最优策略。AlphaGo和AlphaZero是深度强化学习在围棋及国际象棋等领域的成功应用。 六、Python在深度学习中的应用 Python作为首选的编程语言,在深度学习中拥有丰富的库支持如TensorFlow、Keras、PyTorch,这些框架简化了模型构建、训练与部署的过程。此外,NumPy、Pandas和Matplotlib等库也在数据预处理及可视化方面发挥重要作用。 七、深度学习实践 从自然语言处理(NLP)、计算机视觉到自动驾驶和医疗诊断等领域,深度学习的应用非常广泛。在实际项目中,需要应对数据清洗、特征工程、超参数调优以及模型评估与优化等诸多挑战。 总之,深度学习是推动现代人工智能发展的核心力量之一,通过复杂的神经网络结构来解析并理解世界,并不断拓展科技的边界。Python作为强大的工具使得深度学习的研究和应用更加普及便捷。无论是理论探索还是实际应用,深度学习都是充满机遇和挑战的重要领域。
  • 优质
    深度学习是一种人工智能技术,模仿人脑神经网络处理信息的方式,用于识别图像、语音等复杂模式。它通过多层非线性变换自动提取特征,无需人工设计特征,显著提高了机器学习的效果和效率。 《深度学习》一书由三位该领域的专家撰写,是目前唯一全面介绍这一主题的书籍。 深度学习是一种机器学习形式,它使计算机能够通过经验来学习并以概念层次结构的方式理解世界。由于计算机从经验中获取知识,因此不需要人为地为计算机指定所有所需的知识。这种多层次的概念层级使得计算机可以通过构建更复杂的概念来掌握复杂的问题;如果将这些层级关系用图表示出来,则会形成多层的网络。 本书涵盖了深度学习领域的广泛主题,包括数学和理论背景、线性代数、概率论与信息论、数值计算以及机器学习的相关知识。书中还介绍了产业界实践中使用的各种技术方法,如深层前馈神经网络、正则化技术、优化算法、卷积网络及序列建模等,并探讨了自然语言处理、语音识别、计算机视觉和在线推荐系统等多个应用领域。 此外,《深度学习》还涵盖了研究的前沿视角,涉及线性因子模型、自动编码器(Autoencoders)、表示学习(Representation Learning)、结构化概率模型、蒙特卡洛方法(Monte Carlo methods)等理论主题。本书适合希望在产业或学术界从事相关工作的本科生和研究生阅读,同时也适用于想要在其产品或平台中引入深度学习技术的软件工程师使用。书中还提供了额外的学习材料供读者及教师参考。
  • 机器算法PPT.rar_机器PPT_PPT_课件_讲义
    优质
    本资源包含关于机器学习及深度学习的核心概念和算法讲解的PPT文件,适用于教学与自学。涵盖从基础理论到实际应用的内容。 这份机器学习课件涵盖了从基础入门到深度学习的全面内容,非常详尽。
  • 项目:探索实践
    优质
    本项目聚焦于深度学习的实际应用与研究,涵盖神经网络模型构建、训练优化及案例分析等内容,旨在提升参与者的理论知识和实战技能。 深度学习是人工智能领域的一项核心技术,它利用神经网络模型对复杂数据进行建模,在图像识别、语音识别及自然语言处理等领域展现出卓越的能力。本项目旨在使用Python编程中的Keras库和TensorFlow后端来实施深度学习项目。 Keras是一个高级的神经网络API,通过Python接口运行在如TensorFlow、Theano或CNTK等不同的计算平台之上。它的设计目的是为了方便用户操作,并且模块化的设计让研究人员可以快速地测试他们的想法,推动了深度学习领域的进步。其主要优势在于清晰简洁的代码结构,便于实现复杂的网络架构。 TensorFlow是由Google开发的一个开源机器学习框架,它引入了数据流图的概念用于数值计算,在深度学习中描述的是模型中的数学操作流程以及这些操作间的数据流动。该框架的一大特点是可以高效地在各种硬件平台上运行,包括CPU、GPU和TPU等。 本项目可能包含以下内容: 1. 数据预处理:深度学习模型的表现很大程度上依赖于输入数据的质量。这一步骤通常涉及数据清洗、归一化、标准化以及特征提取等工作。 2. 构建神经网络模型:Keras提供了多种预先定义的层,如卷积层和全连接层等,并且还有不同的优化器可供选择,使得构建深度学习模型变得非常简便。项目中可能会展示如何创建多层感知机(MLP)、卷积神经网络(CNN)或循环神经网络(RNN)。 3. 训练与验证:通过划分训练集、验证集和测试集进行操作,演示在Keras环境下配置参数设置损失函数及指标,并执行模型的训练过程。这可能涵盖批量大小的选择、训练周期数以及早停策略等细节。 4. 模型评估:完成模型训练后,将展示如何使用测试数据来衡量其泛化能力,包括准确率、精确度和召回率在内的多种性能评价标准都将被提及。 5. 模型保存与加载:Keras支持对整个模型以及权重的存储及恢复功能,在后续的操作中可以快速地回到之前的训练状态继续进行开发工作或调整实验设置。 6. 实战应用案例分析:项目可能会包含图像分类、文本情感分析和语音识别等具体的应用场景,展示了深度学习技术解决实际问题的能力。 7. 模型优化方法探讨:可能包括超参数调优、正则化措施以及数据增强策略等内容来提高模型的性能。 综上所述,通过结合使用Keras与TensorFlow框架,本项目为初学者提供了一个实践平台以掌握深度学习的基本流程,并体验高级API带来的便捷性。研究该项目有助于加深对理论知识的理解并提升实际操作能力。
  • []动手实践笔记-6
    优质
    本篇笔记是关于深度学习系列教程的第六部分,内容主要围绕着模型优化、正则化技术以及卷积神经网络的实际应用进行详细探讨和代码实现。 任务三——循环神经网络进阶6.1 长短期记忆(LSTM) 6.1.1 理论知识理解:理解LSTM网络 6.1.2 LSTM的从零开始实现 以下为代码: 导入相应的包 ```python import numpy as np import torch from torch import nn, optim import torch.nn.functional as F import sys sys.path.append(..) import d2lzh_pytorch as d2l device = torch.device(cuda if torch.cuda.is_available() else cpu) ```
  • 笔记.xmind
    优质
    《深度学习学习笔记.xmind》是一份利用思维导图形式整理和记录深度学习知识与思考的学习资料,适合于学生、研究者及从业者参考使用。 本段落将详细介绍神经网络训练流程及其基本元素,包括激活函数(ReLU、Softmax、Sigmoid、Tanh)以及损失函数(交叉熵:sigmoid_cross_entropy_with_logits、softmax_cross_entropy_with_logits、sparse_softmax_cross_entropy_with_logits、weighted_cross_entropy_with_logits)、均方差。此外还将介绍优化器(梯度下降法和动量优化法)。