Advertisement

5V升压至12.6V芯片电路图及三节锂电池充电方案.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本资料提供了一种将5V电压升压至12.6V的芯片电路设计方案,并包含适用于三节锂电池充电的具体实施方案。 本知识点将详细介绍如何使用5V升压至12.6V的芯片电路图以及如何利用PW4053和PW4203这两款芯片实现对三节锂电池的充电。 考虑到每节电池电压为3.7V,串联后的总电压达到11.1V。然而为了确保完全充满电,需要将充电电压提升至12.6V。因此需要一个能够将5V升压到这个值的电路设计来满足需求。PW4053是一款专为此目的而设计的芯片,它可以在输入为5V的情况下输出足够的电压以给三节锂电池充电。 另一方面,PW4203则适用于15至20伏特范围内的电源,并可以将该范围内任意电平降至适合一到三个串联电池使用的水平。这两款IC都支持高效率电流管理以及充放电模式切换,外围电路设计简洁且成本效益良好。 在实际应用中,例如笔记本电脑的USB接口或外部适配器等不同输入电压条件下(如5V、13V、15V和18V),PW4053与PW4203能够智能调节充电电流以避免对电源造成过大压力。特别是PW4203具备过压保护功能,可以防止因过高输入电压而导致的损坏。 对于进一步将电压转换为更低水平的需求(例如5V、6V或3.3V),可以通过使用LDO线性稳压器或者DC-DC降压转换器来实现。比如PW6513高耐压LDO支持高达40伏特输入,并提供过电流限制和软启动等保护机制。 在选择合适的DC-DC降压转换器时,如PW2162这款集成有同步整流技术的装置便是一个理想的选择,因为它能够处理从4.5V到16V范围内的宽泛电压变化并输出1V至15V之间的任意电平,并且效率高达96%。此外还有其他型号比如PW2163和PW2330等可供选择,它们在输入电压、输出电流及封装形式等方面有所不同。 总结起来,上述内容涵盖了设计针对三节锂电池充电电路所需的重要理论基础和技术细节,包括电池串联规则及其所需的充电电压要求;利用特定IC实现高效的升压与降压转换功能;以及如何通过适当的外围组件配置来确保系统的稳定性和高效性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 5V12.6V.pdf
    优质
    本资料提供了一种将5V电压升压至12.6V的芯片电路设计方案,并包含适用于三节锂电池充电的具体实施方案。 本知识点将详细介绍如何使用5V升压至12.6V的芯片电路图以及如何利用PW4053和PW4203这两款芯片实现对三节锂电池的充电。 考虑到每节电池电压为3.7V,串联后的总电压达到11.1V。然而为了确保完全充满电,需要将充电电压提升至12.6V。因此需要一个能够将5V升压到这个值的电路设计来满足需求。PW4053是一款专为此目的而设计的芯片,它可以在输入为5V的情况下输出足够的电压以给三节锂电池充电。 另一方面,PW4203则适用于15至20伏特范围内的电源,并可以将该范围内任意电平降至适合一到三个串联电池使用的水平。这两款IC都支持高效率电流管理以及充放电模式切换,外围电路设计简洁且成本效益良好。 在实际应用中,例如笔记本电脑的USB接口或外部适配器等不同输入电压条件下(如5V、13V、15V和18V),PW4053与PW4203能够智能调节充电电流以避免对电源造成过大压力。特别是PW4203具备过压保护功能,可以防止因过高输入电压而导致的损坏。 对于进一步将电压转换为更低水平的需求(例如5V、6V或3.3V),可以通过使用LDO线性稳压器或者DC-DC降压转换器来实现。比如PW6513高耐压LDO支持高达40伏特输入,并提供过电流限制和软启动等保护机制。 在选择合适的DC-DC降压转换器时,如PW2162这款集成有同步整流技术的装置便是一个理想的选择,因为它能够处理从4.5V到16V范围内的宽泛电压变化并输出1V至15V之间的任意电平,并且效率高达96%。此外还有其他型号比如PW2163和PW2330等可供选择,它们在输入电压、输出电流及封装形式等方面有所不同。 总结起来,上述内容涵盖了设计针对三节锂电池充电电路所需的重要理论基础和技术细节,包括电池串联规则及其所需的充电电压要求;利用特定IC实现高效的升压与降压转换功能;以及如何通过适当的外围组件配置来确保系统的稳定性和高效性。
  • PW420312.6V规格说明书.pdf
    优质
    本手册详细介绍了PW4203三节锂电池专用充电芯片的各项技术参数与应用指南,适用于电池管理系统及便携式电子设备设计。 PW4203 是一款适用于便携式应用的 4.5-22V 输入、2A 同步降压多节锂离子电池充电器。该产品通过选择引脚实现灵活的多电池充电功能。其800 kHz同步降压调节器集成了具有超低导通电阻和22V额定值的FET,从而实现了高效率和简单的电路设计。PW4203采用8针SOP封装形式,提供紧凑且散热性能良好的系统解决方案。
  • 12.6V5V与18V输入中文规格书.pdf
    优质
    本文件为12.6V三节锂电池充电芯片提供详细的中文规格说明,涵盖5V及18V输入电源下的性能参数、操作条件和安全规范。 PW4203 是一款适用于便携式应用的 4.5-22V 输入、2A 多芯同步降压锂离子电池充电器。它具有选择引脚,便于多电池充电操作。该设备包含一个800 kHz 同步降压调节器,并集成了两个超低导通电阻 FET(耐受电压为 22V),以实现高效率和简单的电路设计。PW4203 提供了 8 针 SOP 封装,提供非常紧凑的系统解决方案以及良好的导热性能。
  • 3.7V5V 1A
    优质
    本方案介绍了一种针对3.7V锂电池设计的高效升压充电电路,能够提供稳定的5V 1A输出,适用于多种便携式电子设备充电需求。 锂电池不含镉、铅、汞等重金属元素,对环境无污染,是目前最先进的绿色电池,在手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具及照相机等多种便携式电子设备中得到广泛应用。 本设计提供了一种3.7V锂电池充电与升压电路(输出5V1A),使用的芯片包括FP6291、LY8205和LY3086。附件包含该电路的图示及其PCB供参考使用,仅供参考分享交流之用。
  • B6285V、9VPCB布局(PW5328B)
    优质
    本资料提供了一种基于PW5328B芯片的电路设计方案,用于将B628锂电池电压升压至稳定的5V和9V输出,并详细展示了电路图与PCB布局。 B628升压电路:输入电压范围为3-4.2V,输出5V 1A;另一配置下输入电压同样为3-4.2V,但输出9V 0.6A。关于B628的PCB布局建议,请参考PW5328B芯片的相关资料和设计指南。电路板上应标注“B628”字样以示区分。
  • 设计
    优质
    本资料详细展示了三芯锂电池充电器的设计方案与电路图,涵盖从原理分析到实际应用的各项技术细节。 在电子硬件设计领域,锂电池充电器对于使用三芯锂电池的设备来说至关重要。三芯锂电池通常由三个单体电池串联组成,提供更高的电压以适应需要较大能量存储的应用。 这篇文章将深入探讨一个3A三芯锂电池充电器的工作原理和电路设计。首先了解基本工作流程:预充、恒流充电以及恒压充电阶段。在预充阶段,通过逐步激活内部化学物质为后续快速填充电池做准备;接着是提供稳定电流的恒流充电过程;最后,在保持电压稳定的条件下逐渐减小电流直至进入涓流充电状态。 该3A三芯锂电池充电器电路中包含一个由Q3、R4和D3构成的关键内置开关装置。其中,二极管D3防止反向电流流动,并在直流输入电源接入时导通以允许电流通过MOSFET Q3进入电路;而Q3作为控制元件确保仅当有外部供电存在的情况下才会让电流流向LM3411和另一个可能的MOSFET(标记为Q1)。 LM3411是一款高效率、低噪声降压型开关稳压器,适用于锂电池充电应用。它能根据电池状态调整输出电流实现恒流充电,并在整个过程中监测电压确保安全。另外,用于控制充放电过程中的负载开关MOSFET Q1也起到关键作用。 当电源断开时,Q3会自动关闭以避免无源电池的自放电现象及降低待机功耗,从而延长了电池寿命并几乎不消耗电量。 此外,电路中还可能包括多种保护机制如过充、过热和短路防护来确保锂电池在充电过程中不会受损。这些措施防止电解液分解导致电池老化缩短使用寿命;避免因温度过高引发的危险情况发生;以及当出现异常时迅速切断电流以保障设备与电池的安全。 总的来说,该三芯锂电池充电器电路设计巧妙地结合了开关控制、电源管理和安全保护功能,在提供高效可靠的同时也确保了使用的安全性。这对于电子爱好者和硬件设计师来说是一个重要的学习内容,并且在开发个人充电器或改进现有产品方面具有重要价值。
  • .pdf
    优质
    本资料提供了详细的锂电池充电电路设计图解与说明,帮助读者理解并实现高效的锂电池充电解决方案。 锂电池充电电路图的PDF文件可以提供详细的电路设计参考。锂离子电池的负极材料是石墨晶体,正极则通常使用二氧化锂作为主要成分。在充电过程中,锂离子从正极移动到负极,并嵌入石墨层中;而在放电时,则是从石墨晶体内脱离并移向正极表面。因此,在充放电循环中,锂始终以锂离子的形式存在,而不是金属锂的形态出现,这就是为什么这种电池被称为锂离子电池或锂电池的原因。
  • TP4057
    优质
    TP4057是一款专为单节锂离子/聚合物电池设计的线性恒流恒压充电管理集成电路。其内置的保护机制确保了高效安全的充电过程,适用于便携式电子设备中电池的维护与管理。 锂电充电芯片电路资料的详细使用情况请参见文件内容。
  • 5V用于3.7V
    优质
    本设计提供了一种适用于3.7V锂电池管理的5V充放电电路方案,旨在有效提升电池充电效率及安全性能。 3.7V锂电池5V充放电电路设计涉及将电池电压从3.7V升至5V以便充电,并在需要时降回以供设备使用。这样的电路通常包括升压转换器用于充电,以及可能的稳压或开关模式调节器来控制放电过程中的输出电压。
  • 管理的中文资料
    优质
    本资料详细介绍了一款针对三节锂电池设计的高效能充电管理芯片,包括其工作原理、技术参数及应用案例。适合工程师和技术爱好者阅读参考。 锂电池充电管理芯片的使用方法及配置介绍涵盖了所有充电管理原理的知识点。阅读这份资料后,您将能够全面理解相关技术细节,与TI公司的充电技术具有相似性。