Advertisement

电源技术中谐振电容与电感的计算及参数设计方法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文探讨了在电源技术领域中,如何准确计算和合理选择谐振电路中的电容与电感参数,以优化电源性能。通过深入分析不同设计方案,提出实用的设计方法,旨在为工程师提供有效的参考依据。 引言 PWM开关电源在硬开关模式下运行(即,在开/关过程中电压下降/上升与电流上升/下降波形有交叠),导致了较高的开关损耗。尽管高频化可以减小体积和重量,但同时也会增加开关损耗。因此,研究能够避免电压/电流波形重叠的技术变得至关重要,例如零电压切换(ZVS)或零电流切换(ZCS)技术,也被称为软开关技术。对于小型功率应用的电源而言,采用这种技术可以使效率提高到80%至85%。 自20世纪70年代谐振开关电源为软开关技术奠定了基础以来,各种新的方法不断涌现,包括准谐振、全桥移相ZVS-PWM(在20世纪80年代中期)、恒频ZVS-PWM/ZCS-PWM(上世纪80年代末)以及有源嵌位的ZVS-PWM等。此外,在20世纪90年代初期还出现了零电压转换PWM和零电流转换PWM技术,进一步推动了软开关电源的发展。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本文探讨了在电源技术领域中,如何准确计算和合理选择谐振电路中的电容与电感参数,以优化电源性能。通过深入分析不同设计方案,提出实用的设计方法,旨在为工程师提供有效的参考依据。 引言 PWM开关电源在硬开关模式下运行(即,在开/关过程中电压下降/上升与电流上升/下降波形有交叠),导致了较高的开关损耗。尽管高频化可以减小体积和重量,但同时也会增加开关损耗。因此,研究能够避免电压/电流波形重叠的技术变得至关重要,例如零电压切换(ZVS)或零电流切换(ZCS)技术,也被称为软开关技术。对于小型功率应用的电源而言,采用这种技术可以使效率提高到80%至85%。 自20世纪70年代谐振开关电源为软开关技术奠定了基础以来,各种新的方法不断涌现,包括准谐振、全桥移相ZVS-PWM(在20世纪80年代中期)、恒频ZVS-PWM/ZCS-PWM(上世纪80年代末)以及有源嵌位的ZVS-PWM等。此外,在20世纪90年代初期还出现了零电压转换PWM和零电流转换PWM技术,进一步推动了软开关电源的发展。
  • 线绕空心器(值、自分布、Q值频率)
    优质
    本工具为电子工程师设计,用于精确计算线绕空心电感器的各项关键参数,包括电感值、自分布电容、品质因数(Q值)以及自谐振频率,帮助优化电路性能。 输入电感的尺寸参数可以计算出电感值、自分布电容、Q值以及自谐振频率等参数,非常实用。本人发布资源旨在共享精神,希望与各位朋友共同学习,一起进步。设置下载积分只是为了遵守平台规则,如果您没有足够的积分但需要使用我发布的资源,请通过邮件联系我请求所需资料,欢迎交流!邮箱:deadtomb@163.com
  • 反激在工作原理、应用
    优质
    本文章深入探讨了准谐振反激变换器的工作机制,并分析其在现代电源技术中的广泛应用及关键参数计算方法。 如果不再使用固定的时钟来初始化导通时间,而是通过检测电路有效地“感知”MOSFET(VDS)漏源电压的第一个最小值或谷值,并仅在此时刻启动MOSFET的导通时间,则由于寄生电容被充电至最低电压,导致电流尖峰将得到最大程度的减小。这种情况常被称为谷值开关(Valley Switching)或者准谐振开关。 这篇文章旨在分享关于准谐振反激原理、应用及参数计算方面的知识。 在“Q”代表“Quasi”,而“R”代表“resonant”的准谐振QR技术中,主要目的是降低MOSFET的开关损耗。这些损耗主要是由自身的输出电容造成的。 从上图可以看出,一般的开关损耗来源于:
  • LC测量
    优质
    本项目旨在设计并实现一种有效的测量方法,用于测定LC振荡电路中的电容和电感值。通过精确控制和分析电路特性,优化了测量精度和效率,为电子工程领域提供了一种实用工具。 本段落简要介绍了利用LC振荡电路测量电容和电感的设计原理,并通过实验验证了该方法能够准确测量高频电感和电容,且精度符合要求。
  • 磁炉线圈和
    优质
    本文章探讨了电磁炉中线圈与电容构成的LC谐振电路的基本原理及其实现方法,并详细介绍了如何进行相关参数的设计和计算。 解决电磁的电感线圈与谐振电容匹配计算的问题很简单,在表格里填入对应的参数就能计算出当前谐振频率的最佳点。
  • 品质因
    优质
    本篇文章详细探讨了如何在不同类型的谐振电路中精确计算品质因数(Q值),涵盖理论解析和实用技巧。 品质因数是谐振电路中的一个重要参数,在国内一般教材中通常仅限于在简单RLC串联或并联谐振电路的过压、过流方面进行定义和计算方法的介绍。
  • 基于UCC28600反激式开关
    优质
    本设计基于UCC28600芯片,提出了一种高效的准谐振反激式开关电源方案,适用于多种电源技术应用。 本段落提出了一种基于UCC28600控制器的准谐振反激式开关电源的设计方案。该方案分析了准谐振反激式开关电源的工作原理及实现方式,详细给出了电路设计、参数选择过程,并展示了实际工作中的开关波形。实验结果表明,所设计的准谐振反激式开关电源具有宽输入电压范围、高转换效率、低电磁干扰(EMI)以及稳定可靠的特点。采用准谐振技术显著降低了MOSFET的开关损耗,从而提高了产品的可靠性。 准谐振变换是一种成熟的技术,在消费电子产品的电源设计中被广泛应用。新型绿色电源系列控制器能够实现极低的待机功耗,典型值为150毫瓦以下。本段落将详细说明准谐振反激式转换器如何提高电源效率,并介绍使用UCC28600进行准谐振电源设计的方法和步骤。
  • 串联式开关储能滤波
    优质
    本文探讨了在串联式开关电源系统中,如何精确计算所需储能滤波电容器的关键参数与设计方法,以优化电路性能和稳定性。 1-2-4.串联式开关电源储能滤波电容的计算 我们从流过储能电感的电流为临界连续状态开始分析,探讨储能滤波电容C在充放电过程中的特性,并据此计算其数值。 图1-6展示了当串联式开关电源工作于临界连续电流状态下,电路中各点电压和电流的变化情况。其中Ui表示输入电压,uo是控制开关K的输出电压,Uo为电源滤波后的输出电压,iL代表流过储能电感的电流,Io则是负载上的电流。图1-6-a)显示了控制开关K的输出电压变化;图1-6-b)呈现的是储能滤波电容C充放电的过程;而图1-6-c)则描绘了流经储能滤波电感iL的变化曲线。 当串联式开关电源处于临界连续电流状态时,我们对电路的工作原理进行详细分析。
  • 反激开关输出应用
    优质
    本文章介绍了反激式开关电源中输出电容的计算方法及其重要性,并探讨了其在提高电源效率和稳定性方面的实际应用。 1. 设定开关工作频率为60kHz,并设定输出电流Io为1A;根据变压器参数及输入、输出电压计算得出实际最大占空比Dmax为0.457。 2. 计算关断时间Toff和导通时间Ton: Toff = 1/f * (1 - Dmax) = 9.05微秒 Ton = 1/f * Dmax = 7.62微秒 3. 根据反激式电路的输出波形,计算所需输出电容量。 4. 输出电压在t1到t2时间段内下降。假设输出纹波为120mV,则: 5. 纹波电流通常取值范围是输出电流的5%至20%,即Inppl=20%*1A = 0.2A,这意味着每个电解电容需要承受的最大纹波电流为0.2A。因此设计满足要求。
  • BOOST、BUKC、逆变表.rar_BOOSTBUKC
    优质
    本资源包含BOOST和BUCK电路中所需电感的设计与计算方法,以及相关的逆变电容参数,附带详细的计算表格,方便电子工程师进行高效准确的电路设计。 关于BOOST电感、BUKC电感以及逆变电容的详细计算表格,请参考以下内容:电感计算表提供了详尽的数据支持,方便进行相关参数的精确计算。