Advertisement

GD32F405RGT6 ADC的外部触发DMA

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本简介探讨了如何使用STM32微控制器系列中的GD32F405RGT6芯片进行ADC(模数转换器)的外部触发DMA配置,实现高效的数据采集与处理。 GD32F405RGT6的ADC可以通过外部触发启动DMA传输。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • GD32F405RGT6 ADCDMA
    优质
    本简介探讨了如何使用STM32微控制器系列中的GD32F405RGT6芯片进行ADC(模数转换器)的外部触发DMA配置,实现高效的数据采集与处理。 GD32F405RGT6的ADC可以通过外部触发启动DMA传输。
  • STM32F103高速多通道ADC采集与DMA数据传输
    优质
    本项目介绍如何使用STM32F103微控制器实现高速多通道模拟信号采集,并通过外部触发启动DMA模式进行高效的数据传输。 STM32F103多通道ADC采集使用外部触发定时器进行采样,并可设置ADC的采样率,结合DMA实现高速数据传输。该程序适用于STM32F103C8T6单片机,并且可以轻松移植到STM32F103VET6或ZET6等型号上。由于采用了外部触发机制和定时器来控制采集频率,因此具有良好的灵活性与可扩展性。
  • STM32上升沿ADC采样
    优质
    本简介探讨了如何使用STM32微控制器实现外部信号上升沿触发的ADC(模数转换器)采样功能。通过配置GPIO与EXTI线,结合ADC中断设置,实现在检测到输入信号电平由低转高时自动启动ADC转换,适用于精确测量瞬态信号的应用场景。 通过外部PB11口捕获上升沿来触发ADC采样,欢迎大家下载。
  • 【STM32】HAL库应用:双ADC快速交叉模式+DMA+示例
    优质
    本教程详解了如何使用STM32 HAL库实现双ADC在快速交叉模式下通过DMA进行数据传输,并配置外部触发功能,适用于高性能模拟信号采集场景。 使用STM32F103C8T6单片机,在Keil MDK 5.32版本下配置ADC1和ADC2进行单次转换操作。其中,ADC1的规则通道由定时器3的TRGO事件触发,该事件源自定时器更新事件,并且每500毫秒发生一次更新,因此ADC每隔500毫秒执行一次转换。 具体来说,在ADC1中配置两个规则通道:首先是PA0(通道0),其次是PA1(通道1)。同样地,在ADC2中也开启两个规则通道,顺序与ADC1相同。对于这两个单片机的ADC模块而言,它们设置为相同的采样时间长度——即每个转换所需时间为1.5个ADC周期。 当完成这些配置后,每当一个规则通道上的数据被采集完毕时,DMA将负责把从ADC_DR寄存器中读取的数据传输至用户指定的目的地址。同时,在每次规则通道的转化完成后会触发中断,并在相应的回调函数内通过串口输出转换得到的数据值。
  • STM32 TIM通用定时器ADCDMADAC
    优质
    本项目介绍如何使用STM32微控制器的TIM通用定时器来触发ADC采样和通过DMA通道驱动DAC输出,实现高效的外设交互。 STM32系列微控制器在嵌入式系统设计中的应用非常广泛,其TIM(Timer)模块、ADC(Analog-to-Digital Converter)、DAC(Digital-to-Analog Converter)以及DMA(Direct Memory Access)是核心功能之一。本段落将深入探讨如何利用STM32的TIM通用定时器触发ADC的DMA转换,并说明如何使用基本定时器TIM6来触发DAC输出。 在STM32中,TIM通用定时器具有丰富的能力,包括计数、比较、PWM输出、输入捕获和溢出等特性。当与ADC配合时,它可以通过TRGO(Timer ResetUpdate Generation Output)信号作为外部触发源启动ADC转换。每当定时器发生特定事件(如更新事件),TRGO信号被激活以开始ADC的采样及转换过程,从而确保在预定的时间间隔或由特定事件驱动下进行精确采样。 配置TIM来触发ADC的过程包括: 1. 初始化TIM:设置工作模式、预分频器和计数器值等参数,使TRGO事件能在预期时间产生。 2. 配置ADC:选择合适的通道,并设定采样时间和转换序列。同时将TIM的TRGO信号设为外部启动源。 3. 启用DMA:配置传输方向(从外设到内存)和完成或半传输中断等参数,以确保数据被正确地转移到内存中。 4. 关联TIM与DMA:通过激活定时器的DMA请求使能功能,在每次TRGO事件发生时触发数据传输。 5. 启动TIM及ADC:启动这两个模块后,每当更新事件出现时就会自动开始新的采样和转换过程,并将结果保存到内存。 接下来讨论如何使用TIM6基本定时器来驱动DAC输出。作为STM32中的一个基础型计时单元,TIM6具备简单的周期性中断功能,非常适合用于如控制DAC这样的简单任务中。在这个场景下,我们仅需配置其预分频器和计数器值以确保在期望的时间间隔内产生更新事件。 具体步骤如下: 1. 初始化TIM6:设定所需参数使定时器能在预定时间间隔生成周期性中断。 2. 配置DAC:选定要使用的通道,并设置电压参考及输出缓冲等选项。 3. 启用TIM6的更新中断功能,这将在每个计时周期结束时触发一次操作。 4. 在每次TIM6产生的更新事件中刷新DAC的输出值,实现连续的数据流传输。 5. 开启定时器和DAC:启动两者后,在每一个周期内都会按照预定设置调整DAC输出。 通过上述实例可以看出STM32中的TIM、ADC、DAC及DMA是如何协同工作的。这种机制对于实时系统设计、波形生成以及信号处理等领域来说非常有用,掌握这些知识有助于提高系统的性能并简化软件架构复杂度。
  • GD32F405RGT6串口DMA接收与
    优质
    本简介探讨了如何在基于ARM Cortex-M4内核的微控制器GD32F405RGT6上实现串口通信中的DMA(直接内存访问)技术,包括数据的高效接收和发送方法。通过运用DMA,可以减少CPU的干预,提高系统的实时性和资源利用率,在嵌入式系统开发中具有重要意义。 GD32F405RGT6使用DMA进行串口接收和发送可以提高数据传输效率。通过配置DMA控制器来处理串口的数据收发任务,能够减轻CPU的负担,并实现更高效的通信功能。在设置过程中需要正确初始化USART(通用同步异步接收发射器)模块以及相关的DMA通道,确保两者之间的有效连接与通信参数的一致性,以保证数据传输过程中的稳定性和可靠性。
  • STM32定时器双通道ADC+DMA
    优质
    本项目介绍如何使用STM32微控制器配置定时器以周期性地触发两个独立通道的ADC转换,并通过DMA传输数据至存储器中,实现高效的数据采集与处理。 STM32是一款基于ARM Cortex-M内核的微控制器,在嵌入式系统设计中有广泛应用。该设备中的定时器、模拟数字转换器(ADC)以及直接内存访问(DMA)是其重要组成部分,其中DMA可以提高数据传输效率。 在STM32中,存在多种类型的定时器如TIM1至TIM15等,并且每个类型的功能和特点有所不同。在这个场景下,我们可能使用高级定时器(TIM1或TIM8),或者通用定时器(TIM2至TIM5)来触发ADC转换。当达到预设的计数值时,这些定时器可以生成一个中断或事件。 模拟数字转换器(ADC)是将连续变化的模拟信号转化为离散值的数字化信号的关键部件,在STM32中,它通常包含多个通道以连接不同的外部传感器或其他类型的模拟输入。在配置ADC时,我们需要设定采样时间、转换分辨率以及序列模式等参数,并且可以设置为双路模式以便同时对两个不同通道进行转换。 DMA(直接内存访问)允许数据无需CPU的介入,在存储器和外设之间直接传输。这减轻了CPU的工作负担并提高了效率。在STM32中,可以通过配置合适的DMA流、通道以及传输级别等参数来实现高效的ADC到内存的数据传输,并且当ADC转换完成后,可以利用中断通知CPU。 为了实现在定时器触发下的双路数据采集实验,我们需要进行以下步骤: 1. 配置定时器:选择适当的类型并设置预分频器和自动重载值。 2. 设置ADC参数:确定使用的通道、采样时间和序列模式,并启用双路转换功能。 3. 设定DMA配置:包括流和通道的选择以及传输长度的定义等。 4. 连接ADC与DMA:确保在完成转换后能够通过DMA请求将数据传送到内存中。 5. 编写中断服务程序:处理定时器、ADC和DMA相关的中断,以便更新状态并执行后续操作。 6. 初始化启动流程:配置所有组件之后开始采集数据。 这一方法使得STM32能够在实时控制下定期触发ADC转换,并利用DMA高效地传输结果到内存中。这对于需要高频率且精确的数据采集的应用非常有用,并可以提高系统的整体效率和响应速度,同时减少了CPU资源的使用量。
  • STM32F4x多路ADC结合定时器TIM3控制采样时间及DMA传输
    优质
    本项目介绍如何使用STM32F4系列微控制器实现通过多通道ADC配合外部定时器TIM3精确控制采样时机,并利用DMA进行数据高速传输,适用于高精度数据采集系统。 在STM32F4x系列微控制器上使用多路ADC,并通过外部定时器TIM来控制采样时间。利用DMA将采集的数据直接输出到缓冲区(buff),并通过串口依次打印每个通道的采样数据。
  • 【STM32】HAL库应用: 双ADC同步规则模式+DMA++自动注入示例
    优质
    本项目演示了如何使用STM32 HAL库实现双ADC同步采集,在规则通道与自动注入通道间切换,并通过DMA传输数据,支持外部触发功能。 使用STM32F103C8T6单片机与Keil MDK 5.32版本进行开发。 ADC1和ADC2都设置为单一转换模式,其中ADC1的规则通道外部触发源设定为定时器3的TRGO事件。该TRGO信号由定时器3的更新事件产生,并且每500毫秒发生一次,因此ADC每隔500毫秒进行一次转换。 对于ADC1而言,开启两个规则通道和两个注入通道。具体来说,规则通道按顺序为:通道0(PA0)与通道1(PA1),而注入通道则遵循相同的序列安排。 同样地,对于ADC2也开启了两个规则通道及两个注入通道。其具体的转换序列为:规则通道上首先使用PA1作为第一个,随后是PA0;在注入频道中,则按照PAA和PA0的顺序进行设置(原文中的“PAA”可能是笔误)。 无论是ADC1还是ADC2,在相同位置上的所有转换时间都保持一致。例如,两个器件的通道0规则转换所需的时间是一样的。 每当任何一个规则通道完成转换后,DMA将负责从ADC_DR寄存器中提取数据,并传输到用户指定的目的地址处。 同时启用了ADC1和ADC2的自动注入功能;对于ADC2而言,还特别开启了其注入通道转化完成后触发中断的功能。在每次转换结束后,在相应的回调函数内通过串口输出所采集的数据信息。
  • STM32ADCDMA传输(由定时器
    优质
    本文章介绍了如何在STM32微控制器中配置ADC并通过DMA进行数据传输的方法,重点讲解了使用定时器作为触发源来启动ADC转换的过程。 STM32之ADC+DMA传输(定时器触发):本段落介绍了如何在STM32微控制器上使用ADC结合DMA进行数据采集,并通过定时器触发来实现高效的数据传输,从而减少CPU的负担并提高系统的响应速度。这种方法特别适用于需要连续监测传感器信号的应用场景中。