Advertisement

通过ROS Noetic、MAVROS和PX4,在Gazebo环境中进行多机协同仿真的实现。

  • 5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文件中的所有代码均已完成调试,并且默认情况下,Ubuntu系统已经预装了PX4-Autopilot。为了开始使用,请按照以下步骤操作:1. 首先,在工作空间目录下执行 `source ~/multi_uav_test202206/devel/setup.bash` 命令。2. 打开QGC飞行控制站,若尚未安装,请自行下载安装。3. 在终端中输入 `roslaunch px4 multi_uav_mavros_sitl.launch` 命令。4. 最后,打开一个新的终端并执行 `rosrun offboard offboard_node` 命令。成功运行后,您将观察到三架无人机以圆形轨迹进行运动,这表明位置控制功能已正常运作。请注意调整 `multi_uav_mavros_sitl.launch` 文件中的无人机节点数量、ID以及它们各自的仿真UDP号,以确保每个无人机具有唯一标识。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ROS Noetic + MAVROS + PX4 Gazebo 仿
    优质
    本项目利用ROS Noetic、MAVROS及PX4在Gazebo环境中实现多无人机协同仿真的技术探索,涵盖编队飞行、路径规划等复杂任务。 本段落件中的所有代码已经调试完毕,并假设您的Ubuntu系统已安装好PX4-Autopilot。使用方法如下: 1. 首先,请在工作空间中执行命令:`source ~/multi_uav_test202206/devel/setup.bash` 2. 打开QGroundControl(简称QGC),如果没有安装请自行下载; 3. 在终端输入命令:`roslaunch px4 multi_uav_mavros_sitl.launch` 4. 再打开一个终端,执行命令:`rosrun offboard offboard_node` 成功后,您将看到三架无人机按照圆形轨迹进行位置控制运动。请注意,在 `multi_uav_mavros_sitl.launch` 文件中需要修改无人机节点的数量、ID以及对应的仿真UDP号以确保它们各不相同。
  • 基于PX4ROSGazebo无人仿平台
    优质
    本项目构建了一个集成PX4飞控系统、ROS机器人操作系统和Gazebo模拟器的无人机虚拟测试环境,旨在为开发者提供一个高效且灵活的研发与实验平台。 基于PX4、ROS和Gazebo的无人机通用仿真平台提供了一个集成化的开发环境,支持从硬件抽象到飞行控制算法验证等一系列功能。这个平台为开发者提供了高度可定制且灵活的工作空间,适用于科研项目以及产品原型设计等多个场景。通过结合PX4自动驾驶软件栈与ROS机器人操作系统,并利用Gazebo模拟器进行物理和传感器行为的精确建模,该仿真系统能够有效地支持无人机系统的开发、测试及验证过程。
  • 基于PX4ROSGazebo无人仿平台
    优质
    本项目开发了一个集成PX4飞控系统与ROS框架的无人机通用仿真环境,利用Gazebo进行高精度模拟测试。 在现代科技领域,无人机技术的发展日新月异。基于PX4、ROS(Robot Operating System)和Gazebo的无人机通用仿真平台是该领域的关键研究工具之一,为无人机的研发、测试与教育提供了强大支持。这些技术结合使用使开发者能够在虚拟环境中模拟飞行控制、感知及避障等复杂任务。 PX4是一款开源的飞行控制系统,主要用于无人驾驶航空器,包括固定翼飞机、多旋翼和混合动力无人机。它采用模块化设计,并具备飞行控制算法、传感器融合、导航以及自主飞行等功能。PX4的优势在于其灵活性高,能够适应各种类型的无人机,并拥有广泛的社区支持。 ROS是一个用于机器人的开源中间件平台,为机器人设备与软件提供标准化接口及工具集。ROS的核心组件包括节点管理、话题通信和服务交互等特性。在无人机领域中,ROS经常被用来实现传感器数据处理、路径规划和控制算法等功能。通过使用ROS,开发者可以轻松集成各种硬件设备和软件模块以构建复杂的无人机系统。 Gazebo是一个开源的3D仿真环境工具,能够模拟真实物理条件如重力、摩擦及碰撞检测等,并支持多种类型的传感器模型(例如摄像头与激光雷达),使开发人员能够在虚拟环境中测试无人机感知系统的性能。它具有良好的ROS兼容性,可以直接通过ROS接口在Gazebo中运行和测试基于ROS的无人机系统。 “XTDrone-master”这个压缩包可能包含了一个基于以上技术构建的无人机仿真项目源码内容:PX4配置文件、ROS节点代码、Gazebo场景描述文档以及控制与测试脚本。开发者解压并编译该项目后,可以了解如何将这些工具整合到一个统一环境中进行飞行控制系统实验。 在实际应用中,这样的仿真平台对于无人机研发具有重要意义。它不仅减少了实飞试验的风险和成本,并且提供了一个可重复性和扩展性高的测试环境。通过该平台,开发人员可以在虚拟条件下不断优化控制算法、调试硬件配置乃至模拟不同天气与地理条件来提升无人机的稳定性和智能化水平。 基于PX4、ROS及Gazebo构建的通用仿真平台是促进自动驾驶和无人系统领域创新的重要基石之一。深入理解并掌握这些技术有助于开发者更高效地设计和改进无人机系统,为未来的智能飞行器带来更多的可能性。
  • PX4Gazebo仿教程
    优质
    本教程详细介绍如何在机器人模拟器Gazebo中使用开源飞行控制软件PX4进行仿真设置和操作,适合初学者快速上手。 PX4的Gazebo仿真教程详细介绍了单机的Gazebo仿真和多机仿真的实现过程,适用于希望使用ROS进行多节点多机仿真的学习者。
  • Ubuntu 20.04上使用ROS Noetic两轮差速器人仿
    优质
    本文章介绍了如何在Ubuntu 20.04操作系统中搭建ROS Noetic环境,并在此基础上实现两轮差速机器人的仿真,适合对机器人仿真感兴趣的技术爱好者参考学习。 在Ubuntu 20.04操作系统与ROS Noetic环境中实现一个两轮差速移动机器人的仿真是一种高效的方法,为机器人技术的研发提供了低成本且高效的测试平台。本篇文章将详细阐述如何利用URDF标签创建该类型的机器人模型,并通过xacro优化代码。 首先,在这个过程中使用了Ubuntu 20.04操作系统,它是一个稳定性和安全性都得到提升的Linux发行版。ROS Noetic作为当前最新版本的机器人操作系统之一,提供了强大的工具和库来支持复杂的机器人系统的开发与测试工作。在Ubuntu虚拟机环境下安装并运行ROS Noetic使得开发者可以更便捷地模拟实际操作环境。 为了构建两轮差速移动机器人的模型,在仿真过程中使用了URDF(Unified Robot Description Format)标签。这是一种基于XML格式的语言,用于描述机器人结构的物理特性,包括关节和链接等核心元素。对于此类机器人而言,最基本的组成部分是两个驱动轮及其辅助设备;通过在URDF文件中定义这些部件的具体参数及相互关系来构建完整的模型。 此外,在该仿真项目里还集成了摄像头与雷达等多种传感器,以增强其感知能力并支持自主导航功能开发。例如,摄像头用于收集视觉信息而雷达则主要用于距离测量和避障等任务;通过模拟这些设备的数据传输过程可以更好地测试机器人的环境适应性和决策机制。 为了提高代码的可维护性及简洁度,在URDF文件的基础上使用了xacro(XML Macros)进行优化处理。这种方法允许开发者定义宏、常量以及条件表达式,从而减少重复代码并增强项目的整体结构清晰度。 最后,要启动该仿真项目需要遵循以下步骤: 1. 创建一个新的ROS工作空间; 2. 将包含URDF和RViz相关文件的压缩包解压至上述创建的工作空间内; 3. 使用catkin工具编译整个工作空间以确保所有依赖项被正确处理并生成所需的可执行文件; 4. 运行相应的launch启动文件来初始化仿真环境。 通过这些步骤,可以成功地在Ubuntu 20.04与ROS Noetic环境中搭建并运行一个虚拟两轮差速移动机器人模型。此外还可以利用RViz可视化工具观察机器人的运动状态及传感器数据等信息。 此项目不仅要求开发者具备对ROS和Linux系统的深入理解,还需要掌握机械设计、传感器融合以及编程等方面的知识。对于从事机器人学研究的人员而言,这既是一个学习与实践的好机会,也是一个检验理论知识在实际应用中效果的理想平台。
  • Gazebo使用ArduPilot无人仿
    优质
    本教程介绍如何在Gazebo模拟环境中利用ArduPilot软件进行多架无人机的飞行仿真,适用于研究与开发人员。 ### Ardupilot多架无人机于gazebo内仿真的详细知识点 #### 一、Ardupilot_gazebo插件的安装与配置 ##### 1. 安装额外依赖项 要在Gazebo Garden环境中使用Ardupilot_gazebo插件,首先需要确保已经安装了必要的依赖项。可以通过以下命令完成: ```bash sudo apt update sudo apt install libgz-sim7-dev rapidjson-dev ``` 这里,`libgz-sim7-dev`是Gazebo Garden的开发库,而`rapidjson-dev`则用于JSON解析。 ##### 2. 创建工作区并克隆插件库 接下来创建一个新的工作区,并在这个工作区内克隆Ardupilot_gazebo插件库。可以按照以下步骤操作: ```bash mkdir -p gz_wssrc && cd gz_wssrc git clone https://github.com/ArduPilot/ardupilot_gazebo.git ``` 这样就将插件库克隆到了`gz_wssrc`目录下。 ##### 3. 构建插件 为了构建插件,需要先设置`GZ_VERSION`环境变量来指定使用的Gazebo版本。假设这里使用的是Gazebo Garden,可以设置环境变量为`garden`: ```bash export GZ_VERSION=garden cd ardupilot_gazebo mkdir build && cd build cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo make -j4 ``` 这里,`-DCMAKE_BUILD_TYPE=RelWithDebInfo`指定了编译类型为带有调试信息的发布版本,而`-j4`则指定了同时运行的最大任务数为4。 #### 二、配置Gazebo环境变量 为了使Gazebo能够正确地识别和加载插件以及模型文件,需要设置一些环境变量。这些变量可以在终端中设置,也可以在`.bashrc`或 `.zshrc` 文件中设置,以便每次打开新的终端窗口时自动加载这些变量。 ```bash export GZ_SIM_SYSTEM_PLUGIN_PATH=$HOME/gz_wssrc/ardupilot_gazebo/build:$GZ_SIM_SYSTEM_PLUGIN_PATH export GZ_SIM_RESOURCE_PATH=$HOME/gz_wssrc/ardupilot_gazebomodels:$HOME/gz_wssrc/ardupilot_gazeworlds:$GZ_SIM_RESOURCE_PATH ``` 这里,`GZ_SIM_SYSTEM_PLUGIN_PATH`指向了插件的构建目录,而 `GZ_SIM_RESOURCE_PATH` 则包含了模型和世界的路径。 #### 三、测试运行Gazebo与Ardupilot结合使用 完成以上步骤后,就可以开始测试Gazebo与Ardupilot的结合使用了。 ##### 1. 运行Gazebo 首先启动Gazebo模拟器,并指定一个世界文件(如 `iris_runway.sdf`): ```bash gz sim -v4 -r iris_runway.sdf ``` 这里, `-v4` 表示设置日志级别为 4,而 `-r` 则表示从文件加载世界。 ##### 2. 运行SITL(Software in the Loop) 接着,运行 SITL (软件在环路中)来模拟飞行控制器的行为。使用以下命令: ```bash sim_vehicle.py -v ArduCopter -f gazebo-iris --model JSON --map --console ``` 这里, `-v ArduCopter` 选择了飞行器类型为ArduCopter, `-f gazebo-iris` 指定了Gazebo中的模型, `--model JSON`、 `--map` 和 `--console` 则分别启用了JSON模型输出、地图显示和控制台输出。 ##### 3. 解锁并起飞 通过命令行解锁飞行器并使其起飞: ```bash STABILIZE> mode guided GUIDED> arm throttle GUIDED> takeoff 5 ``` 这里, `mode guided` 切换到引导模式, `arm throttle` 解锁电机,而 `takeoff 5` 让飞行器飞到高度 5 米。 #### 四、多架无人机文件配置 对于多架无人机的仿真,需要对模型文件进行相应的配置。 ##### 1. 模型文件的修改 需要复制原始模型文件夹(例如 `iris_with_ardupilot`),并为其分配不同的名称(例如 `iris_with_ardupilot_9002`)。 对于每个新模型文件夹,都需要进行以下修改: - 修改 `model.sdf` 文件中的 `model name` 为新的名称。 - 修改 `model.sdf` 文件中的 `` 标签,将其指向新的模型
  • 基于GazeboROS3D物理仿研究.docx
    优质
    本文档探讨了在ROS(机器人操作系统)环境下使用Gazebo进行三维物理仿真技术的研究。通过深入分析与实验验证,旨在提升仿真环境的真实性和效率,为机器人开发提供更强的支持和优化方案。 在ROS(机器人操作系统)环境中进行3D物理仿真是一种重要的技术手段,它能够帮助开发者在一个安全的虚拟空间内测试并优化机器人的控制算法。Gazebo是一款强大的开源工具,在ROS中被广泛使用,提供了高度逼真的场景和物理模拟功能。 初始化一个空的世界环境是必要的步骤之一,通常通过编写`launch`文件来实现这一目的。例如可以创建名为`gazebo0.launch`的文件,并在其中调用Gazebo提供的预设模板——比如`empty_world.launch`,用于加载空白仿真场景。在这个过程中需要设置一些启动参数:将`use_sim_time`设定为true以确保ROS节点能够使用模拟时间;同时把`gui`参数配置为true来开启图形用户界面的显示功能。此外还可以根据具体需求调整其他选项如暂停模式、记录日志以及调试输出等。 接下来,我们需要在仿真环境中添加具体的机器人模型作为实验对象。这里以一个简单的例子——移动小球为例进行说明:通过编写并编辑URDF(统一机器人描述格式)文件定义了该物体的属性特征;然后将此文件加载到`launch`脚本中,在Gazebo模拟器里生成相应的实体。 为了控制这个虚拟模型的行为,我们需要开发一些特定程序来发送运动指令。例如可以创建一个名为`draw_circle.cpp`或类似名称的代码文件,指定小球沿着圆形路径移动的具体算法;运行这些节点后便能驱动仿真中的对象按照预设轨迹执行动作。 最后一步是利用ROS提供的三维可视化工具rviz观察并分析实验结果:通过在rviz中添加相应的数据流(如位姿跟踪、机器人模型等),可以直观地查看小球的实时位置变化及运动路径。此外,还可以通过修改控制程序来实现更复杂的轨迹绘制功能。 在整个操作过程中可能会遇到一些技术难题,比如Gazebo启动后立即崩溃的问题;这通常与虚拟机软件中的3D图形加速设置有关。解决办法是关闭VMware等平台上的硬件加速选项以确保正常运行仿真环境。 总之,利用ROS结合Gazebo进行的三维物理仿真实验为机器人开发和研究提供了强大而灵活的工作空间。从创建初始场景、定义模型特性到实现运动控制乃至结果可视化分析等一系列过程,都充分展示了这一技术栈的优势所在,并且掌握这些技能对于从事相关领域的专业人士来说十分重要。
  • Ubuntu 18.04构建Gazebo仿.zip
    优质
    本资源提供详细的教程和步骤,在Ubuntu 18.04操作系统上安装并配置Gazebo仿真软件,适用于机器人学和自动化领域的学习与研究。 在Ubuntu 18.04操作系统上搭建Gazebo仿真环境是机器人技术、自动驾驶汽车及无人机等领域研究开发的重要步骤之一。Gazebo是一款强大的3D模拟器,提供逼真的物理与视觉效果,让开发者能够在没有实际硬件的情况下测试和验证算法。 首先需要确保系统是最新的状态。打开终端并输入以下命令来更新系统: ```bash sudo apt update sudo apt upgrade ``` 接下来安装必要的依赖项。Gazebo需要用到一些库和工具,如libopencv-dev、libboost-all-dev、libgazebo9及libgazebo9-dev等。运行下面的命令进行安装: ```bash sudo apt install -y build-essential cmake git libopencv-dev libboost-all-dev ``` 在Ubuntu 18.04中,默认软件源已包含Gazebo,可以通过apt直接安装它: ```bash sudo apt install gazebo9 ``` 若需要与ROS(机器人操作系统)集成使用,则先要安装ROS Melodic。ROS提供了方便的接口来操作Gazebo: ```bash sudo sh -c echo deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main > /etc/apt/sources.list.d/ros-latest.list wget https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -O - | sudo apt-key add - sudo apt update sudo apt install ros-melodic-desktop-full ``` 完成安装后,初始化ROS环境: ```bash source /opt/ros/melodic/setup.bash ``` 为了方便日常使用,可以将上述命令添加到~/.bashrc文件中: ```bash echo source /opt/ros/melodic/setup.bash >> ~/.bashrc source ~/.bashrc ``` 接下来安装Gazebo插件和模型。ROS Melodic包含了一些预装的Gazebo插件,但你可能还需要其他插件,例如`gazebo_ros_pkgs`: ```bash sudo apt install ros-melodic-gazebo-plugins ros-melodic-gazebo-ros-pkgs ``` 为了获取更多的环境模型,可以安装`gazebo_ros2_control`和`gazebo_ros2_models`: ```bash sudo apt install ros-melodic-gazebo_ros2_control ros-melodic-gazebo_ros2_models ``` 现在你已经成功地在Ubuntu 18.04上安装了Gazebo与ROS Melodic,可以启动Gazebo来开始使用。打开一个新的终端窗口并输入: ```bash gazebo ``` 这将在屏幕上打开Gazebo的主界面。你可以通过ROS发布`gazeboset_world`服务来加载不同的场景。 为了在ROS中和Gazebo进行交互,创建一个工作空间,并编译你的项目。通常情况下,一个ROS工作空间包括src目录、build目录以及devel目录。在家目录下创建名为`catkin_ws`的工作区: ```bash mkdir -p catkin_ws/src cd catkin_ws/src ``` 将你的项目克隆或下载到`src`文件夹内,然后返回至工作区根目录进行构建: ```bash cd .. catkin_make source devel/setup.bash ``` 现在你可以运行ROS节点并与Gazebo环境互动了。例如启动一个简单的机器人模型: ```bash roslaunch my_robot_gazebo my_robot_world.launch ``` 请将`my_robot_gazebo`和`my_robot_world.launch`替换为你的实际项目名称。 在Ubuntu 18.04上搭建Gazebo仿真环境是一个多步骤的过程,包括系统更新、依赖项安装、ROS配置以及与Gazebo及ROS节点的交互。掌握这些步骤对于虚拟环境中开发和测试机器人应用至关重要。通过不断实践学习,在Gazebo中创建复杂且逼真的场景将为你的项目提供强有力的支持。
  • 基于ROS信代码Gazebo仿
    优质
    本项目基于ROS平台,实现了机器人节点间的高效通信,并通过Gazebo进行详尽的仿真测试,验证了系统的稳定性和可靠性。 运行环境:Ubuntu16.04 + ROS Kinetic + Gazebo8.0 运行步骤: Stanley算法: - 启动文件:smartcar_description/smartcar_gazebo.launch - 启动文件:waypoint_loader/waypoint_loader.launch - 启动文件:waypoint_updater/waypoint_updater.launch - 启动文件:stanley_persuit/stanley_persuit.launch Pure Pursuit算法: - 启动文件:smartcar_description/smartcar_gazebo.launch - 启动文件:waypoint_loader/waypoint_loader.launch - 启动文件:waypoint_updater/waypoint_updater.launch - 启动文件:pure_persuit/pure_pursuit.launch Haar特征车辆识别: - 启动文件:robot_vision/vehicle_detector.launch