本研究探讨了利用信息融合技术提高发动机故障诊断准确性和效率的方法,结合多种传感器数据和智能算法,旨在实现早期预警与精准维护。
故障诊断技术是实现航空发动机视情维护、降低使用维护成本以及保障飞行安全的重要手段,在航空动力技术领域备受关注。本段落围绕信息融合技术对航空发动机的故障融合诊断进行了研究,包括气路部件性能故障诊断、传感器故障融合诊断、定性和定量的部件故障诊断及交叉融合诊断。
### 基于信息融合的发动机故障诊断
#### 摘要
随着现代航空工业的发展,提高航空发动机可靠性和安全性成为关键课题。作为实现这一目标的重要手段之一,基于信息融合技术的方法在解决故障诊断问题中发挥了重要作用,并取得了显著成果。
#### 关键研究内容
1. **机载自适应模型及健康参数分析**
- 建立稳态点线性化模型并形成大范围小偏差模型。通过卡尔曼滤波器实现发动机的机载自适应,包含关键部件的健康参数。
2. **气路部件性能诊断方法**
- 采用改进核参数及惩罚因子寻优算法(AGA-LSSVR),提高故障诊断准确性;同时使用多输出最小二乘支持向量回归机(MO-LSSVR)简化模型结构,降低计算复杂度。
3. **传感器故障融合诊断系统**
- 设计自协调粒子群(PSPO)算法优化SVR超平面,并开发了具备监测、隔离和恢复功能的航空发动机传感器故障诊断系统。
4. **部件故障定性融合诊断**
- 利用D-S证据理论对基于模型与数据驱动方法的结果进行并行处理,实现有效的定性故障模式识别。
5. **定量特征层并行融合诊断**
- 使用自调整权重的量子粒子群优化算法(QPSO)及进化支持向量回归机(ESVR),解决了连续量化融合中的难题。
#### 结论
本研究通过信息融合技术对航空发动机故障进行了深入探索,不仅提高了故障诊断准确性和效率,还为后续相关领域提供了有价值的参考。综合运用多种先进技术和方法实现了气路部件性能、传感器及其他类型故障的有效识别和处理,从而保障了航空发动机的安全运行。