Advertisement

AdsRecognition:利用朴素贝叶斯分类器识别广告,力求降低假阴性率

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种基于朴素贝叶斯分类器的方法——AdsRecognition,专注于提高广告检测中的假阴性率,增强用户体验和系统准确性。 使用朴素贝叶斯分类器来识别广告,并努力实现低误报率。数据集来自 UCI 机器学习存储库。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • AdsRecognition:广
    优质
    本研究提出了一种基于朴素贝叶斯分类器的方法——AdsRecognition,专注于提高广告检测中的假阴性率,增强用户体验和系统准确性。 使用朴素贝叶斯分类器来识别广告,并努力实现低误报率。数据集来自 UCI 机器学习存储库。
  • 算法-
    优质
    简介:朴素贝叶斯算法是一种基于贝叶斯定理与特征条件独立假设的高效概率分类方法,常用于文本分类、垃圾邮件过滤等领域。 朴素贝叶斯分类器在估计类条件概率时假设给定类标号y的情况下属性之间是条件独立的。这一条件独立性的假设可以形式化地表示如下: 每个训练样本可以用一个属性向量X=(x1,x2,x3,...,xn)来表示,其中各个属性之间的关系被假定为在给定类标号下相互独立。
  • 的MATLAB实现:
    优质
    本文章介绍了如何使用MATLAB语言来实现机器学习中的经典算法之一——朴素贝叶斯分类器。通过简洁的代码和实例,帮助读者掌握其原理及应用方法。 这里的文件包含以下内容: 1. load_data:从csv文件导入数据。 2. 可视化:在名为“可视化”的文件夹中的训练数据中打印两个类的特征分布直方图。 3. estimate_:估计给定数据的模型。 4. classify_:根据模型和数据进行分类。 5. 测试:使用 alpha=1:0.1:1000 测试 Naive 分类器,并在“可视化”文件夹中打印一个名为 accuracy 1-1000.pdf 的图。 6. InspectTheModel:尝试衡量每个类的每个特征值的影响。 7. jointProb:计算给定一个类的两个给定特征值的联合概率。 8. 互信息:在训练数据上计算互信息以驱动最可能依赖特征对的选择。 9. testingBonus:使用候选特征对测试朴素分类器。 要运行演示,请运行testing.m,并根据需要更改开始、步骤和结束。
  • 进行的研究.rar
    优质
    本研究探讨了使用朴素贝叶斯分类器进行模式识别的有效性,并通过实验验证其在特定数据集中的应用效果。 本资源利用朴素贝叶斯分类器实现了数据的多分类。文件包括朴素贝叶斯分类器的实现代码、训练数据和测试数据以及对应的类别标签。分类结果较好,能达到91.25%。
  • 基于的高NB语音
    优质
    本研究采用高斯分布的朴素贝叶斯分类器进行语音信号处理,旨在有效区分男性和女性的声音特征,实现精准的性别识别。 高斯NB是一种基于朴素贝叶斯分类器的语音性别识别方法。
  • C++实现
    优质
    本项目使用C++语言实现了机器学习中的经典算法——朴素贝叶斯分类器,适用于文本分类、垃圾邮件检测等应用场景。代码简洁高效,便于理解和二次开发。 朴素贝叶斯分类器是一种基于概率的机器学习算法,它依赖于贝叶斯定理及特征条件独立假设。在C++编程语言环境下实现该分类器可以为多样化的数据分类任务提供一个高效且易于理解的方法。首先需要掌握的是贝叶斯定理这一重要概念——它是关于已知某些事件发生条件下另一特定事件发生的概率计算规则,而在分类问题中,则是用于计算给定特征下某类别的可能性大小。 “朴素”一词则表示在该算法中的一个核心假设:即每个输入特征都会独立地影响最终的类别决策,并且彼此之间不存在关联性。这种简化的设定大大简化了模型的学习和预测过程,使其能够在处理大规模数据集时保持高效运行速度。 实现C++版本的朴素贝叶斯分类器通常涉及以下步骤: 1. **数据预处理**:包括收集原始数据、清洗以及转换非数值型特征为数值形式(如通过独热编码);同时还需要对缺失值进行填补或剔除。 2. **特征选择与统计分析**:计算各类别下各个特征的出现频率,对于离散变量采用计数方法,连续变量则可能需要额外求解均值和方差等统计数据。 3. **模型训练阶段**:利用贝叶斯公式来估计每种类别的先验概率以及给定类别条件下各特征的概率分布情况。其中,先验概率是指各类别在整个样本空间中的比例;而条件概率则是指在特定类目下观察到某个特征的可能性大小。 4. **预测实施**:对于未见过的新实例,通过计算其属于各个可能分类的后验概率,并选取具有最高可能性的那个作为最终预测结果。 5. **封装与移植性增强**:为了方便使用和维护代码,通常会将上述功能集成进一个类或函数内。这类实现应提供清晰直观的操作接口(如训练、测试等)并且配有详尽注释便于他人理解及后续扩展开发。 在“NativeBayes”文件夹中可能包含以下内容: - `NativeBayesClassifier.cpp/h`:朴素贝叶斯分类器的具体实现代码,包括类定义及其相关方法; - `data.cpp/h`:辅助函数库用于支持数据的读取、预处理及表示工作; - `main.cpp`:一个示范程序展示如何运用上述分类器进行训练和预测操作; - `dataset.txt`:可能包含一份示例数据集,供演示之用。 - `Makefile`:帮助编译执行整个项目的构建脚本。 实际应用中,利用C++语言开发的朴素贝叶斯模型可以广泛应用于包括但不限于文本归类(如垃圾邮件过滤)、情感分析、推荐系统等领域。其简洁明了的设计和优秀的性能使其成为学习入门与专业开发者共同青睐的选择之一;同时通过适当的调整优化还能进一步提升分类准确度及效率水平。
  • Java编写
    优质
    本项目采用Java语言实现了一个基于朴素贝叶斯算法的分类器。通过概率统计方法对数据进行分类预测,适用于文本分类、垃圾邮件检测等场景。 实验描述:对指定数据集进行分类问题的分析,选择适当的分类算法,并编写程序实现。提交程序和结果报告。数据集为 balance-scale.data(见附件一)。使用该数据集构建贝叶斯分类器。数据包括五个属性值,第一个属性表示样本的类别号,其余四个属性代表不同的特征值。
  • Python实现
    优质
    本教程详细介绍如何使用Python编程语言从头开始构建和应用朴素贝叶斯分类器进行文本分类。 朴素贝叶斯分类器是一种基于贝叶斯定理和特征条件独立假设的简单概率分类器。在Python编程环境中,可以使用scikit-learn库来实现这种算法,并利用其内置的数据集进行测试。 首先,我们需要导入所需的库,包括numpy以及scikit-learn中的datasets模块。在此基础上,我们创建了一个名为`NaiveBayesClassifier`的类,该类包含了训练和分类的基本方法。 在初始化函数`__init__()`中定义了数据矩阵、标签矩阵以及用于存储类别概率和特征条件概率的数据结构。接下来是加载数据的方法`loadDataSet()`,它使用scikit-learn库中的iris数据集,并将相应的特征向量赋值给dataMat变量,对应的类别标签则被分配到labelMat。 计算每个类别的先验概率是在初始化函数中完成的步骤之一:通过统计每一类样本的数量占总样本数量的比例来实现。为了按类别分隔数据,我们定义了`seperateByClass()`方法;该方法构建了一个字典结构,其中键为不同的类别标签,值是属于这些类别的特征向量子集。 在计算每个特征的条件概率时使用到了`getProbByArray()`函数:它接收一个二维数组作为输入,并返回每列(即每一个特征)中各个数值出现的概率。对于那些在整个数据集中从未出现过的特定情况下的特征取值,我们采用了一种称为“拉普拉斯平滑”的方法来避免除零错误。 训练过程是在`train()`方法中进行的:通过计算每个类别的先验概率,并利用之前定义的方法将数据按类别分割,然后对每一个类别执行条件概率的计算。此外还涉及到处理那些在特定类别下未出现过的特征值的问题。 最后,在分类阶段使用了`classify()`函数来预测新的样本属于哪一类。这一过程首先通过初始化一个数组来存储每个类别的先验概率,并且对于输入的新数据点,根据其属性与已知训练集的匹配情况计算出它归属于各类的概率;最终返回具有最高后验概率的那个类别作为分类结果。 总的来说,这个实现展示了一个基于贝叶斯定理和特征独立假设构建起来的基本朴素贝叶斯分类器。通过对iris数据集进行训练及测试,它可以对新的样本点执行有效的分类任务。尽管这里的代码设计简洁明了,但在实际应用中仍需根据具体问题的特点加以调整和完善。
  • 手写数字)代码汇总.doc
    优质
    这份文档汇集了用于手写数字识别的贝叶斯分类器(主要为朴素贝叶斯算法)的多种实现代码,适用于学习和研究。 《基于贝叶斯分类器(朴素贝叶斯)的手写数字识别代码大全》这篇文档主要探讨了使用朴素贝叶斯分类器进行手写数字识别的技术与应用。手写数字识别是光学字符识别技术的一个重要分支,旨在让计算机自动读取纸上的阿拉伯数字,在数据输入、统计报表等领域具有广泛应用前景。 手写数字识别在现实中意义重大,尤其是在信息化建设如“三金”工程推进的过程中,能够显著提高录入效率。尽管印刷体和在线手写识别已取得较大进展,但离线手写数字识别仍面临诸多挑战,包括字形相似性、书写风格多样性以及对高精度及低误识率的严格要求。 朴素贝叶斯分类器是一种基于贝叶斯定理的统计学方法,在大规模数据集处理中表现出色。该算法假设特征之间的条件独立性,即在给定类别的情况下,每个特征的影响与其他特征无关。尽管实际应用中的这种假设并不总能成立,但在许多场景下仍可提供良好的分类效果。 为了提高手写数字识别的效果,可以采用流形学习方法进行数据预处理以降维和揭示内在结构。此过程通过映射高维度到低维度来简化复杂的数据集,并有助于提升其分类与可视化能力。 在实际应用中使用朴素贝叶斯分类器时通常包括以下步骤: 1. 数据预处理:收集手写数字图像,可能需要对其进行灰度化、二值化或直方图均衡等操作。 2. 特征提取:从预处理后的图像中抽取边缘、形状和纹理等特征用于后续分类。 3. 构建模型:利用训练数据集基于朴素贝叶斯原理建立分类器,并计算各类别的先验概率及条件概率。 4. 分类决策:对于未知的数字,通过计算其属于各个类别的后验概率来决定最终预测结果。 5. 模型评估与优化:使用交叉验证或独立测试集对模型性能进行评价并调整参数以提高识别准确性。 不断迭代和优化可以使手写数字识别系统达到较高的准确率及较低误识率。然而,考虑到手写风格的多样性和复杂性,研究者仍需探索更先进的算法和技术如深度学习来进一步提升识别精度。
  • 算法
    优质
    贝叶斯分类器的朴素算法是一种基于概率论的机器学习方法,通过计算各类别条件下属性的概率来预测数据所属类别。该模型假设各特征之间相互独立,简化了复杂度并广泛应用于文本分类、垃圾邮件过滤等领域。 实现朴素贝叶斯分类器算法的基本功能,并在代码中添加了详细的注释。此外还提供了一个垃圾邮件过滤的实例来展示该算法的应用。需要注意的是,此示例使用的是Python 2.7版本,如果要在Python 3环境下运行,则可能需要根据提示修改部分语法(例如`sorted()`函数的参数)。