Advertisement

MATLAB三维图像代码-SIFT3D:实现三维图像尺度不变特征变换(SIFT),含特征匹配及RANSAC算法...

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
SIFT3D是一款基于MATLAB开发的工具箱,用于执行三维图像中的尺度不变特征变换。此程序集成了特征检测、描述符计算以及使用RANSAC进行特征匹配等功能,适用于计算机视觉领域中物体识别与跟踪的研究和应用。 Matlab三维图像代码SIFT3D版权所有(c)2015-2019Blaine Rister等人,有关详细信息,请参阅LICENSE。SIFT3D是用于三维图像的尺度不变特征变换(SIFT)的一种类似物。它利用体积数据和真实单位来检测关键点并提取其内容的可靠描述符。此外,通过匹配SIFT3D功能及使用RANSAC算法拟合几何变换,可以执行3D图像配准操作。所有这些都在一个跨平台C库中实现,并附带Matlab包装器。 SIFT3D包含imutil,这是一个用于图像处理和线性代数的实用工具库。该库支持各种医学成像格式文件IO功能,包括DICOM和NIFTI。 此代码创建以下可执行文件: - kpSift3D:从单个图像中提取关键点和描述符。 - regSift3D:从两个图像中提取匹配项及几何变换。 此外,它还包含如下库: - libreg.so:通过SIFT3D功能注册图像 - libsift3d.so:用于提取并匹配SIFT3D特征 - libimutil.so:一个实用工具库,支持图像处理、回归和线性代数,并且包括DICOM及NIFTI文件格式的IO功能。 此外还提供了一个Matlab工具箱,以便从Matlab脚本中调用库函数。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MATLAB-SIFT3D(SIFT),RANSAC...
    优质
    SIFT3D是一款基于MATLAB开发的工具箱,用于执行三维图像中的尺度不变特征变换。此程序集成了特征检测、描述符计算以及使用RANSAC进行特征匹配等功能,适用于计算机视觉领域中物体识别与跟踪的研究和应用。 Matlab三维图像代码SIFT3D版权所有(c)2015-2019Blaine Rister等人,有关详细信息,请参阅LICENSE。SIFT3D是用于三维图像的尺度不变特征变换(SIFT)的一种类似物。它利用体积数据和真实单位来检测关键点并提取其内容的可靠描述符。此外,通过匹配SIFT3D功能及使用RANSAC算法拟合几何变换,可以执行3D图像配准操作。所有这些都在一个跨平台C库中实现,并附带Matlab包装器。 SIFT3D包含imutil,这是一个用于图像处理和线性代数的实用工具库。该库支持各种医学成像格式文件IO功能,包括DICOM和NIFTI。 此代码创建以下可执行文件: - kpSift3D:从单个图像中提取关键点和描述符。 - regSift3D:从两个图像中提取匹配项及几何变换。 此外,它还包含如下库: - libreg.so:通过SIFT3D功能注册图像 - libsift3d.so:用于提取并匹配SIFT3D特征 - libimutil.so:一个实用工具库,支持图像处理、回归和线性代数,并且包括DICOM及NIFTI文件格式的IO功能。 此外还提供了一个Matlab工具箱,以便从Matlab脚本中调用库函数。
  • (SIFT)
    优质
    SIFT算法是一种计算机视觉中的关键点检测与描述技术,用于识别和追踪图像中的物体,在不同视角、光照变化下仍保持稳定性。 ### SIFT算法(尺度不变特征变换) #### 一、SIFT算法概述 SIFT(Scale-Invariant Feature Transform)是由David G. Lowe在1999年首次提出,并于2004年得到进一步发展和完善的一种图像处理技术,主要应用于物体识别和图像匹配等领域。作为一种强大的局部描述子,SIFT具有以下特点: - **尺度不变性**:可以在不同尺度下检测到相同的特征点。 - **旋转不变性**:不受图像旋转的影响。 - **平移不变性**:不受图像位置变化的影响。 - **光照和仿射变换鲁棒性**:能够在一定程度上抵抗光照变化和仿射变换的影响。 - **3D投影变换鲁棒性**:在三维投影变换下也表现出较强的稳定性。 Mikolajczyk等人的对比实验显示,SIFT及其扩展算法在多种描述子中具有最强的健壮性。生成的特征点密集且可以实现实时处理速度,并适合大规模数据库中的高效准确匹配。 #### 二、SIFT算法原理 SIFT算法的核心在于尺度空间内寻找关键点并精确定位及描述,主要包括以下步骤: 1. **构建尺度空间**:通过一系列不同尺度下的高斯滤波图像构成金字塔结构。 2. **检测关键点**:在差分高斯函数(DoG)基础上,在不同尺度下找到极值点作为初步的关键点。 3. **精确定位关键点**:去除低对比度和边缘响应的特征,提高稳定性。 4. **分配方向信息**:为每个关键点指定一个或多个主方向以实现旋转不变性。 5. **提取描述子**:在关键点周围获取包含梯度信息的描述符用于匹配。 #### 三、尺度空间理论 尺度空间理论是SIFT算法的基础之一,解决了如何确定图像中的相关点及对应实际物体的问题。核心观点包括: - **多尺度表示**:引入不同细节水平上的图像表示来捕捉物体本质特征。 - **定义与构建**:通过参数化的图像集合(代表模糊程度)在不同尺度下分析和检测特征。 - **选择原则**:存在自适应方法确保最佳尺度下的准确特征点检测。 #### 四、SIFT算法的应用 SIFT因其特性被广泛应用于多个领域,包括: - **目标识别**:匹配已知物体的描述子来识别目标。 - **机器人视觉**:帮助机器人在复杂环境中导航和障碍物识别。 - **图像检索**:快速找到与查询图相似的大量数据库中的图片。 - **图像拼接**:通过特征点自动拼接多张图像为全景视图。 - **3D建模**:基于不同视角下的匹配重建三维模型。 - **手势识别**:用于人机交互的手部动作识别。 - **视频跟踪**:追踪物体在视频序列中的运动轨迹。 - **运动匹配**:对比不同帧之间的物体移动情况。 ### 结论 SIFT算法作为计算机视觉领域的重要工具,表现出了卓越的图像匹配和目标识别能力。通过对原理及实现细节的理解,可以更好地应用这一技术解决实际问题。尽管深度学习的发展对某些应用场景提出了挑战,但SIFT仍然是研究与实践中的重要参考之一。
  • SIFT检测的Matlab-Affine-SIFT: 仿射Matlab
    优质
    本项目提供了一个使用MATLAB语言编写的Affine SIFT(Scale-Invariant Feature Transform)算法,用于在图像处理中进行仿射变换下的特征点检测和描述。 SIFT特征检测的Matlab代码实现涉及仿射尺度不变特性的变换。当前提供的代码仅实现了ASIFT的一次迭代过程。原图筛选结果通过使用仿射滤波器获得,这参考了D.Lowe在International Journal of Computer Vision, 60(2), pp.91-110, 2004.中的工作。该文献详细介绍了高斯差分尺度空间的有效实现方法。 此外,T.Lindeberg的“具有自动尺度选择的特征检测”一文(发表于International Journal of Computer Vision杂志第30卷第2期,页码77-116, 1998年)为那些对数学细节有深入兴趣的研究者提供了高级阅读材料。
  • 基于SIFT提取方
    优质
    该文介绍了基于SIFT(Scale-Invariant Feature Transform)算法的尺度不变特征图像提取技术,用于识别和匹配不同条件下同一物体。 Sift(尺度不变特征变换)用于图像特征提取的过程包括以下步骤:第一步是构建金字塔模型,在这个过程中,不同层使用不同的高斯核函数进行滤波模糊化处理,并且每组使用的sigma值相同;第二步是采用高斯差分模型,即两个高斯模型的差异计算;第三步是确定关键节点的位置;第四步是对这些关键点进行定位并提取其相位信息;最后一步是生成每个关键点的特征。
  • 基于MatlabSIFT)程序.doc
    优质
    本文档提供了基于MATLAB实现的SIFT(Scale-Invariant Feature Transform)算法程序代码。通过该代码,用户能够进行图像特征检测与描述,适用于图像匹配和识别任务。 尺度不变特征变换 SIFT算法 Matlab程序代码.doc 文件提供了关于SIFT(Scale-Invariant Feature Transform)算法的Matlab实现细节和技术说明。这份文档详细介绍了如何使用MATLAB编写用于图像处理中的关键点检测与描述的SIFT算法,适合那些对计算机视觉领域中特征提取技术感兴趣的读者或研究者参考学习。
  • SIFT-python.zip_SIFT_Python_sift提取__提取python
    优质
    本项目为Python实现的SIFT(Scale-Invariant Feature Transform)算法库,用于图像处理中的特征提取与匹配。提供高效稳定的特征点检测和描述功能。 SIFT(尺度不变特征变换)是一种强大的图像处理算法,在不同尺度、旋转及光照条件下识别图像中的关键点方面表现出色。此压缩包包含了一个用Python实现的SIFT算法,适用于提取和匹配图像特征。 以下是关于SIFT及其在Python中应用的相关知识点: 1. **SIFT工作原理**: - **多尺度空间极值检测**: SIFT通过构建高斯差分金字塔来识别不同尺度下的局部最大或最小点。 - **关键点精确定位与描述符生成**: 精准定位这些极值,计算其方向、大小,并在每个关键点周围创建一个旋转不变的128维向量作为描述符。 - **特征匹配**:使用欧氏距离等方法比较不同图像中的描述符以寻找最佳匹配。 2. **Python中实现SIFT**: - 使用OpenCV库,通过`cv2.xfeatures2d.SIFT_create()`创建一个SIFT对象来执行算法。 - 调用`detectAndCompute()`函数提取关键点和计算其描述符。 - 利用BFMatcher或FlannBasedMatcher进行特征匹配。 3. **应用场景**: - **场景识别与定位**: SIFT可用于不同视角下的同一场景的精确匹配,适用于图像重定位任务。 - **物体检测及分类**: 即使在不同的光照和位置条件下也能有效提取出物体的关键特征。 - **视觉SLAM(即时定位与地图构建)**: 在机器人导航领域中帮助实现高精度的地图创建和实时定位。 4. **Python代码示例**: ```python import cv2 sift = cv2.xfeatures2d.SIFT_create() img1 = cv2.imread(image1.jpg,0) img2 = cv2.imread(image2.jpg,0) kp1, des1 = sift.detectAndCompute(img1,None) kp2, des2 = sift.detectAndCompute(img2,None) bf = cv2.BFMatcher() matches = bf.knnMatch(des1,des2,k=2) good_matches = [m for m,n in matches if m.distance < 0.75*n.distance] img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good_matches,None,flags=2) cv2.imshow(Matches, img3) cv2.waitKey(0) ``` 5. **性能优化与注意事项**: - 考虑到SIFT算法的计算效率,对于大规模数据集可能需要使用如SURF或ORB等替代方案。 - 图像质量和关键点数量对匹配效果有显著影响。根据实际情况调整参数以提高精度。 - 使用时需注意版权问题,在商业用途中应确保已获得适当的授权。 通过研究SIFT算法及其Python实现,可以更有效地处理图像特征提取和匹配任务。
  • 基于RANSAC点云拼接MATLAB
    优质
    本研究提出了一种利用特征匹配和RANSAC方法进行高效准确的三维点云拼接算法,并在MATLAB中实现了该算法,适用于多种场景下的数据融合。 在读研期间完成了文献复原工作,包括关键点提取、建立特征描述符、匹配特征点、使用RANSAC算法去除误匹配以及坐标配准的整个流程,并用bunny数据进行了测试。每一步都绘制了图表,结果精度较高。欢迎指出不足之处。
  • SIFT-Python:检测
    优质
    SIFT-Python 是一个基于Python实现的库,用于执行图像处理中的尺度不变特征变换(SIFT),能够检测和描述图像中的关键点。 SIFT-Python 尺度不变特征变换是一种用于图像处理的技术。
  • SURF识别与误校正_SURF_MATLAB_SURF__MATLAB_
    优质
    本文介绍了基于MATLAB的SURF算法在图像处理中的应用,重点阐述了如何利用SURF进行特征识别、多图像间的特征匹配以及误匹配检测和修正的方法。 SURF特征识别与多图像特征匹配是计算机视觉领域中的核心技术之一,在诸如图像识别、目标检测、图像拼接及3D重建等方面有着广泛的应用。2006年,荷兰埃因霍芬理工大学的Hanspeter Pfister等人提出了快速且鲁棒的图像描述符——SURF(Speeded Up Robust Features),它在SIFT基础上进行了优化,在保持稳定性和不变性的同时提高了计算速度。 1. **特征提取** SURF特征提取过程包括尺度空间中的极值检测和生成特征描述符。通过高斯-拉普拉斯金字塔确定图像的尺度空间,以寻找关键点,并通常选择这些关键点作为局部极大或极小值点。随后,对于每个关键点计算一个方向响应函数来定义其方向。接着利用64维Hessian矩阵来描绘关键点周围的结构特征。 2. **特征匹配** 特征匹配涉及在不同图像之间确定对应的特征点。通常使用余弦相似度或汉明距离等方法衡量两个描述符之间的接近程度。MATLAB中的`matchFeatures`函数可用于执行这一操作,并返回相应的匹配对索引值。 3. **误匹配矫正** 由于光照变化、遮挡和类似背景等因素的影响,特征匹配过程中可能会出现错误的对应关系(即误匹配)。为了提高准确性,可以采用RANSAC算法来排除异常数据点。该方法通过随机选择子集并构建几何模型的方式反复进行,并根据内标量的数量找出最优解以剔除这些不正确的匹配。 4. **MATLAB实现** MATLAB图像处理工具箱提供了SURF特征提取和匹配所需的功能,例如`detectSURFFeatures`用于检测关键点、`extractFeatures`用来获取描述符以及使用如`matchFeatures`, `estimateGeometricTransform`, 和 `fitGeometricModel`等函数进行几何校正及模型拟合。 5. **应用实例** 实践中,在图像拼接任务中,通过匹配和纠正误配的SURF特征可以将多张图片无缝地组合成一张全景图。而在目标识别方面,则可以通过比较不同视角下的图像特征来实现同一物体的有效识别。 6. **优化与扩展** 对于大规模数据集的应用场景,可考虑采用更高效的描述符库(如BRISK、ORB)或转向深度学习方法(例如CNN),后者能够自动提取更高层次的特征表示,并进一步提高匹配性能。 综上所述,SURF特征识别和多图像间的特征匹配是计算机视觉技术的关键组成部分,在MATLAB这样的强大科学计算环境中具有完整的工具链支持来进行相关操作与研究。通过深入理解并实践这些算法和技术,我们可以更加有效地应对各种复杂的图像分析挑战。
  • SURF与SIFT
    优质
    本项目详细介绍了如何使用SURF和SIFT算法进行图像特征点检测及匹配的过程,并提供了相应的代码示例。通过这些技术,可以实现高效的图像检索、目标识别等应用功能。 这段代码是基于OpenCV3.1的例程改编而来,能够实现通过SURF/SIFT特征点进行图像匹配的功能。原版例程位于opencv_contrib\modules\xfeatures2d\samples\surf_matcher.cpp文件中。 运行此代码需要满足以下条件:使用VS2013和OpenCV3.1,并且要单独编译与该版本兼容的opencv_contrib模块。有关如何编译的具体方法,可以参考相关文档或在线资源进行学习。