Advertisement

DQN的Pytorch实现: Pytorch-DQN

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
Pytorch-DQN项目采用流行的深度学习框架PyTorch实现了经典的深度Q网络(DQN)算法。它为强化学习爱好者和研究者提供了一个易于理解且灵活的学习资源。 最初的Q学习使用表格方法来解决问题,在状态数量增加的情况下遇到了挑战,因为表无法存储环境中存在的数亿个可能的状态组合。例如,在一个210x180黑白像素的游戏环境中,将有$ 2 ^ {180 * 210} $种不同的可能状态,这使得表格方法变得不可行。 DeepMind通过结合深度学习和Q-learning开发了DQN(基于深度神经网络的Q学习),从而解决了这个问题。具体来说,他们用CNN或DNN替代了传统的表格,并引入了一个目标网络来执行Bellman方程更新以稳定模型训练过程。此外,为了进一步提高性能,还采用了经验回放技术:通过一个存储所有过去状态、动作和下一个状态对的缓冲区进行采样并用于训练模型。 综上所述,DQN利用深度神经网络近似Q值,并采用目标网络与经验重放缓冲机制以稳定学习过程。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DQNPytorch: Pytorch-DQN
    优质
    Pytorch-DQN项目采用流行的深度学习框架PyTorch实现了经典的深度Q网络(DQN)算法。它为强化学习爱好者和研究者提供了一个易于理解且灵活的学习资源。 最初的Q学习使用表格方法来解决问题,在状态数量增加的情况下遇到了挑战,因为表无法存储环境中存在的数亿个可能的状态组合。例如,在一个210x180黑白像素的游戏环境中,将有$ 2 ^ {180 * 210} $种不同的可能状态,这使得表格方法变得不可行。 DeepMind通过结合深度学习和Q-learning开发了DQN(基于深度神经网络的Q学习),从而解决了这个问题。具体来说,他们用CNN或DNN替代了传统的表格,并引入了一个目标网络来执行Bellman方程更新以稳定模型训练过程。此外,为了进一步提高性能,还采用了经验回放技术:通过一个存储所有过去状态、动作和下一个状态对的缓冲区进行采样并用于训练模型。 综上所述,DQN利用深度神经网络近似Q值,并采用目标网络与经验重放缓冲机制以稳定学习过程。
  • DQN-Pytorch:用PytorchDQN
    优质
    DQN-Pytorch项目致力于使用PyTorch框架实现深度Q学习算法(DQN),为强化学习领域提供了一个高效且易于理解的学习资源。 在 Pytorch 中实现 DQN(深度 Q 学习)的方法称为 DQN-Pytorch。这种方法利用了 Pytorch 的强大功能来构建、训练和应用深度强化学习模型。通过使用 Pytorch,开发者可以更方便地进行神经网络的设计与优化,并且能够快速迭代实验以研究不同的算法变体或应用场景。
  • DQN强化学习Pytorch.zip
    优质
    本资源提供了使用Python深度学习框架PyTorch实现的经典DQN(Deep Q-Network)算法代码。适合研究和理解基于强化学习的智能决策过程。 PyTorch 实现 DQN 强化学习涉及使用 PyTorch 框架来构建深度 Q 网络(DQN),这是一种用于训练智能体在环境中采取行动以获得最大累积奖励的算法。实现过程中,通常包括定义神经网络结构、设计经验回放机制以及设置目标Q网络更新策略等步骤。这种技术广泛应用于解决各种决策问题,如游戏玩法规则的学习和机器人导航任务优化等领域。
  • DQN-Atari: Atari Pong深度Q学习(DQN)
    优质
    本项目是基于深度Q网络(DQN)对经典游戏Atari Pong进行智能决策和策略优化的一种实现方式,适用于研究和教学用途。 DQN-雅达利深度Q网络实现:根据论文《利用深度强化学习玩Atari游戏》中的方法进行实施,并展示了每集奖励的结果与游戏视频。 **DQN Nature Paper 架构实现** 输入:84×84×4图像(由最近的四帧组成的历史记录) 转换层1:32个大小为8x8的滤镜,步幅为4 转换层2:64个大小为4x4的滤镜,步幅为4 转换层3:64个大小为3x3的滤镜,步幅为1 完全连接层1:包含256个整流器单元的全连接网络 输出:每个有效动作对应一个单输出线性层 **DQN Neurips 架构实现** 输入:84×84×4图像(由最近的四帧组成的历史记录) 转换层1:16个大小为8x8的滤镜,步幅为4 转换层2:32个大小为4x4的滤镜,步幅为4 完全连接层1:包含256个整流器单元的全连接网络 输出:每个有效动作对应一个单输出线性层 **其他参数** 优化器:RMSProp 批量大小:32 ε贪婪策略(电子贪婪):0.1 创建新环境示例: 使用conda命令创建一个新的Python环境。
  • 基于深度强化学习与Double DQNPendulum-v0环境Pytorch
    优质
    本研究采用深度强化学习及Double DQN算法,在Pytorch框架下实现了对Pendulum-v0环境的有效控制,展示了该方法在连续动作空间中的优越性能。 普通的 DQN 算法通常会导致对值的过高估计问题,由于神经网络在估算 Q 值时可能会产生正向或负向误差,在 DQN 的更新方式下,这些正向误差会被累积起来。对于动作空间较大的任务而言,DQN 中的过估计问题会变得尤为严重,进而导致算法无法有效工作。为解决这一难题,Double DQN 算法提出使用两个独立训练的神经网络来估算值函数:其中一个作为 Double DQN 的第一套神经网络用于选择动作;另一个则作为目标网络用来计算值,从而显著缓解了DQN中的过估计问题。该程序完整实现了 Double DQN 算法,并在Pendulum-v0环境中验证了其对过估计问题的改善效果。从实验结果来看,Double DQN 显著地缓解了 DQN 的过估计现象。
  • Deep Reinforcement Learning for Atari Pong using DQN Algorithm in PyTorch on OpenAI...
    优质
    本研究运用PyTorch实现基于深度Q网络(DQN)算法的深度强化学习模型,成功应用于OpenAI环境下的Atari乒乓球游戏中,展示了在复杂游戏环境中自主学习的能力。 在Atari Pong游戏中应用深度强化学习算法的目的是评估深度Q网络(DQN)在OpenAI环境中对Pong游戏的效果与准确性,并测试该算法的各种改进版本,包括多步DQN、Double DQN 和 Dueling DQN。 从实验结果可以看出,在基本DQN的情况下,仅需大约110次游戏就能达到接近人类的准确度;而经过300场左右的游戏后,其表现则能达到非常高的水平。此项目中考虑的不同版本的改进型DQN显示出在效率和准确性方面的一些提升效果。 Atari 1600仿真器由OpenAI开发,可以用于59种不同的游戏来测试强化学习算法的效果。由于输入数据是当前帧(210x160x3)的RGB图像,并且处理这些图片所需计算量过大,因此将它们转化为灰度图进行简化。接下来的操作包括对图像进行下采样并裁剪至可播放区域大小为84x84x1。
  • 基于PyTorchDQN战教程:详解CartPole问题与四种DQN变体,附清晰注释代码
    优质
    本教程深入讲解了使用PyTorch实现DQN算法解决经典CartPole平衡问题的方法,并提供了四种DQN改进版本及其详细注释代码。 这段文字介绍了一套基于亲身实践的DQN学习资料,使用的是gym库中的经典CartPole(小车倒立摆)模型作为环境,目标是通过训练使倒立摆在不倒的情况下保持在规定范围内移动。这套教程采用纯PyTorch框架编写,避免了Tensorflow中常见的兼容性警告问题,并且提供了良好的可视化效果,使得学习者可以直观地感受到强化学习DQN算法的学习过程和成果。因此,对于初学者来说,这是一个很好的入门途径。
  • 深度强化学习:在PyTorchDQN、SAC、DDPG、TD3等深度RL
    优质
    本书深入讲解了如何使用PyTorch框架实现多种深度强化学习算法,包括DQN、SAC、DDPG和TD3,是掌握现代智能决策系统技术的绝佳资源。 使用Pytorch实现的深度强化学习算法列表如下: 关于深入探讨实验结果: - 离散环境:LunarLander-v2 - 连续环境:Pendulum-v0 所涉及的具体算法包括: 1. DQN(Deep Q-Network) 2. VPG(Vanilla Policy Gradient) 3. DDPG(Deterministic Policy Gradient) 4. TD3(Twin Delayed Deep Deterministic Policy Gradient) 5. SAC(Soft Actor-Critic) 6. PPO(Proximal Policy Optimization) 使用方法: 只需直接运行文件中的相应算法。 在学习这些算法的过程中,由于它们来自不同的来源,因此各个算法之间没有通用的结构。 未来计划:如果有时间,我将为电梯控制系统添加一个简单的强化学习程序,并改进实验结果展示图形。
  • 超详细PytorchDQN算法源码解析(深度强化学习)
    优质
    本篇文章深入剖析了使用PyTorch框架实现DQN算法的过程,并详细解释了深度强化学习中的关键技术点和代码细节。 基于Pytorch实现的深度强化学习DQN算法源代码包含超详细的注释,并已在多个项目中得到实际应用。该代码主要由两个文件组成:(1)dqn.py,实现了DQN智能体结构、经验重放池、Q神经网络和学习方法等;(2)runner.py,使用dqn.py中的智能体与环境进行交互并最终学会仿真月球车着陆游戏。
  • 基于深度强化学习与DQNCartPole-v0验(使用Pytorch
    优质
    本研究利用Pytorch平台,采用深度强化学习及DQN算法对经典控制问题CartPole-v0进行仿真实验,探索最优策略以实现杆平衡状态。 基于Pytorch实现的DQN算法应用于CartPole-v0环境之中。该程序完整复现了DQN算法,并且调整了一些参数以确保可以直接运行。DQN是传统强化学习中的Q-Learning的一种深度学习版本,其改进主要体现在三个方面:首先,它使用神经网络来逼近行为值函数;其次,通过维护一个回放缓冲区(replay buffer),每次从环境中采样得到的四元组数据被存储其中,在训练 Q 网络时再随机从中抽取若干数据进行训练;最后,DQN引入了目标网络的概念,这有助于提高算法在训练过程中的稳定性。