Advertisement

STM8S003红外遥控连发码支持

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:RAR


简介:
本项目介绍如何在STM8S003微控制器上实现红外遥控信号连续发射功能,适用于智能家电及远程控制应用。 在STM8S003最小系统上,PC7口用作红外遥控接收端口。通过定时器的输入捕获功能读取遥控器发送信号中的高电平持续时间,以获取数据。利用定时器中断来判断连续码的数量,并统计按键按下的次数。当检测到按键释放时,返回相应的键值和计数结果。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM8S003
    优质
    本项目介绍如何在STM8S003微控制器上实现红外遥控信号连续发射功能,适用于智能家电及远程控制应用。 在STM8S003最小系统上,PC7口用作红外遥控接收端口。通过定时器的输入捕获功能读取遥控器发送信号中的高电平持续时间,以获取数据。利用定时器中断来判断连续码的数量,并统计按键按下的次数。当检测到按键释放时,返回相应的键值和计数结果。
  • STM8S003
    优质
    本项目为基于STM8S003微控制器设计的红外遥控接收系统,能够接收并解析标准红外信号,适用于家电控制、智能家居等领域。 STM8S003是一款基于意法半导体(STMicroelectronics)的8位微控制器系列芯片,在红外遥控应用领域常用于处理来自红外遥控器的信号,实现设备无线控制功能。其中心任务是将PC7引脚配置为接收端口以获取并解码红外信号。 在这一过程中,红外发射装置通过特定频率发出包含指令信息的光脉冲序列;而STM8S003则负责捕获这些光脉冲,并将其转换成电信号进行解析。为了实现此功能,PC7引脚需要被设置为输入模式并启用中断机制以响应接收到的数据。 红外接收模块通常会输出模拟信号,反映所收到来自遥控器的光脉冲序列的变化情况。STM8S003通过内置ADC或数字比较器来处理这些变化:前者将模拟值转换成便于软件解析的形式;后者则直接检测电平变化并触发中断响应。 解码步骤包括识别出红外信号中的起始、地址和命令等特定信息,这需要根据具体使用的遥控协议(如NEC、RC5或Sony SIRC)编写相应的算法。成功完成这些操作后,STM8S003能够执行与接收到的指令相对应的动作。 为了确保系统的稳定性和准确性,在开发阶段可能需要用到示波器来监测PC7引脚上的信号变化情况,并通过串口通信将数据传输到外部设备进行分析和验证。此外,还需要不断调整硬件电路参数(如滤波设置)以及优化软件算法以达到最佳性能。 文件remote很可能包含了实现红外遥控功能所需的源代码、配置信息或相关文档等资源,有助于深入理解如何在STM8S003上实施这一技术方案的具体步骤和技术细节。通过研究这些资料,可以更好地掌握嵌入式系统设计的实际应用方法和技巧。 总之,在红外遥控领域中,STM8S003凭借其强大的GPIO配置能力、中断管理机制以及信号解码功能,在实现无线控制方面发挥着重要作用。
  • STM8S003使用IAR库函数读取接收续代
    优质
    本文章介绍了如何在STM8S003微控制器上利用IAR开发环境和其库函数来实现对红外遥控信号的捕捉与解析,特别关注于连续码序列的识别。 在IAR环境下使用STM8S003最小系统,并利用PC7口作为VS1838B红外遥控头的接收端,实现从红外遥控器按键读取编码的功能。通过定时器统计按键按下的时长,支持连发码和重复码的读取,并将读取的结果通过串口打印出来。
  • 1838_STM32F103_
    优质
    本项目介绍了如何使用STM32F103芯片实现红外遥控功能,涵盖了硬件连接、信号处理及软件编程等关键技术点。 在STM32F103上编写红外遥控程序需要连接相应的硬件设备。
  • 优质
    红外遥控编码是一种用于远程控制电子设备的技术,通过发送特定格式的数据信号实现对家电、电脑外设等装置的操作。 ```c #include remote.h #include delay.h #include usart.h u8 g_IR_RecFlag = 0; // 红外接收到标志 // 初始化红外遥控接收模块,设置GPIO以及定时器4的输入捕获功能。 void Remote_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_ICInitTypeDef TIM_ICInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); // 使能PORTB时钟 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); // 启用TIM4时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; // PB9 输入模式 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; // 上拉输入 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_SetBits(GPIOB,GPIO_Pin_9); TIM_TimeBaseStructure.TIM_Period = 10000; // 设定计数器自动重装值,最大为10ms溢出 TIM_TimeBaseStructure.TIM_Prescaler =(35-1); // 预分频器设置,使用1M的计数频率,每微秒加一。 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); TIM_ICInitStructure.TIM_Channel = TIM_Channel_4; // 选择输入端 IC4映射到TI4上 TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling; TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStructure.TIM_ICFilter = 0x03; TIM_ICInit(TIM4, &TIM_ICInitStructure); NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn; // 设置定时器中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; TIM_Cmd(TIM4,ENABLE); NVIC_Init(&NVIC_InitStructure); TIM_ITConfig( TIM4,TIM_IT_Update|TIM_IT_CC4,ENABLE); } u8 RmtSta=0; u8 nFlag = 0; u8 nData = 0; u16 Dval; u32 RmtRec=0; // 定时器中断服务程序 void TIM4_IRQHandler(void){ if(TIM_GetITStatus(TIM4,TIM_IT_Update)!=RESET) { if(RmtSta&0x80) { RmtSta &= ~0x10; if((RmtSta&0x0F)== 0x00) RmtSta |= 1<<6; else{ if((RmtSta&0x0F)>= 15) { RmtSta = (RmtSta & ~7); RmtRec=0; RmtCnt=0; } } } } if(TIM_GetITStatus(TIM4,TIM_IT_CC4)!=RESET){ if(!RDATA){ // 低电平,代表下降沿捕获 Dval = TIM_GetCapture4(TIM4); TIM_SetCounter(TIM4,0); TIM_OC4PolarityConfig(TIM4,TIM_ICPolarity_Rising); if(RmtSta&0x80){ if(Dval>1500 && Dval<2000) // 1.688ms nFlag = 0; } RmtSta|=0x10; } else { // 高电平,代表上升沿捕获 Dval=TIM_GetCapture4(TIM4); TIM_OC4PolarityConfig(TIM4,TIM_ICPolarity_Falling); if(RmtSta&0x10) { if(RmtSta&0x80){ if(Dval>600 && Dval<1200){ // 低电平为标准值 nData = (nFlag == 1)?(u8)~RmtRec: RmtRec; RmtRec <<= 1; RmtRec += nData; } else if(Dval>1500 && Dval<2000){
  • _STM32F103C8T6寄存器版本
    优质
    本项目基于STM32F103C8T6微控制器,采用代码与寄存器结合的方式实现红外遥控功能。通过精确配置寄存器控制硬件接口接收和发送红外信号,适用于家电控制、智能设备互动等场景。 使用红外遥控器控制STM32F103C8T6的方法涉及将接收的红外信号解码,并通过STM32微控制器进行处理以实现相应的功能。这通常包括硬件连接配置、软件库的选择与应用,以及编写必要的代码来解析和响应不同的遥控指令。
  • 优质
    红外遥控代码库提供了一系列预编写的代码和资源,旨在简化家电及设备的红外遥控功能开发过程。适用于开发者快速集成各类遥控操作。 本资源包含一个开源的红外码库,涵盖了大约50到60种设备的代码。更为重要的是,其中还包括了一个提供约2000种设备码值的开源码库链接,该链接长期可用以供下载。
  • 优质
    《红外遥控代码库》是一份全面汇集了各种电子设备红外遥控信号编码资源的宝典,为开发者和爱好者提供便捷的参考与学习平台。 本资源包含一个开源的红外码库,涵盖了大约20种设备的代码。更为重要的是,里面提供了一个链接到另一个开源码库,该码库包含了约30000种设备的码值。
  • SM0038
    优质
    红外遥控SM0038是一款专为家电及电子设备设计的远程控制模块,支持便捷的无线操控,适用于多种智能家居应用场景。 红外遥控SM0038单片机C语言编程