Advertisement

面向对象技术应用于高分辨率遥感图像分割研究。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文详细阐述了一种创新的图像分割算法,该算法巧妙地融合了光谱信息、形状特征以及纹理细节的综合分析。这种方法在处理高分辨率遥感图像时表现出卓越的分割性能,其分割结果不仅符合人类视觉系统的自然认知模式,更为重要的是,它能够有效地满足面向对象遥感处理系统ELU所必需的分类精度标准。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 探讨
    优质
    本研究聚焦于采用面向对象的方法,对高分辨率遥感影像进行有效分割的技术探究,旨在提高图像分析与理解的精确度。 本段落提出了一种结合光谱、形状和纹理的图像分割算法,该方法在处理高分辨率遥感图像时表现出色,并符合人的视觉习惯。此外,这种方法还达到了面向对象遥感处理系统ELU对分类精度的要求。
  • U-Net在语义中的.pdf
    优质
    本文探讨了U-Net模型在处理高分辨率遥感图像时进行语义分割的应用效果,并分析其优势与挑战。 图像分割是遥感解译的关键环节之一。高分辨率的遥感图像包含复杂的地物目标信息,传统的分割方法在处理这些复杂的信息上面临诸多挑战,而基于深度卷积神经网络的方法则取得了显著进展。 为此,我们提出了一种改进版U-Net架构的深度卷积神经网络模型来解决高分辨遥感图像中的像素级语义分割问题。通过对原始数据集进行扩充,并针对每类地物目标训练二分类器,最终将各子图预测结果整合为完整的语义分割图像。 此外,我们采用集成学习策略进一步提升了模型的精度,在某个特定的数据集中获得了94%的训练准确率和90%的测试准确率。实验表明该方法不仅能够提供高精确度的结果,并且具备良好的泛化能力,适用于实际工程应用中。
  • 中耕地信息提取方法
    优质
    本研究聚焦于运用面向对象的方法来优化从高分辨率遥感图像中提取耕地信息的技术,旨在提高农业资源监测与管理的精度和效率。 ENVI(The Environment for Visualizing Images)是一个全面的遥感图像处理平台,其软件技术涵盖了从图像数据输入/输出到分类等一系列操作。这些技术包括定标、增强、纠正、正射校正、镶嵌、融合以及各种变换和信息提取等步骤。此外,该平台还支持基于知识的决策树分类与GIS整合,并能进行DEM及地形信息提取、雷达数据处理以及三维立体显示分析等功能。
  • 多层次
    优质
    本研究探讨了一种先进的基于对象的遥感影像处理方法,强调多层次分割技术的应用与优化,旨在提高图像解析精度和自动化程度。 随着遥感技术的发展,特别是高分辨率遥感影像的应用越来越广泛,如何高效准确地从这些影像中提取地理特征信息成为了研究的重点之一。传统的基于像素光谱特征的影像分割方法在处理具有丰富空间结构信息的高分辨率遥感影像时存在明显的局限性。为了克服这些问题,近年来发展起来的一种基于区域的面向对象影像分析方法提供了一种新的思路。 高分辨率遥感影像能够捕捉到地面景物的细节,包括道路、房屋、耕地等多种地物目标。然而,这些地物往往具有复杂的纹理和形状,使得从影像中自动识别并量测地物类型变得非常困难。此外,尽管高分辨率遥感影像的数据质量不断提高,但由于缺乏有效的处理和信息提取方法,人工解译仍然占据了主导地位,这不仅耗时耗力,而且限制了高分辨率遥感影像的实际应用范围。 为了解决上述问题,本研究提出了一种基于相邻影像区域合并异质性最小的面向对象多尺度分割算法。这种方法能够在不同尺度下进行影像分割,并且根据具体的分析任务或感兴趣的目标自动调整分割的尺度参数。具体来说: - 基于区域的方法:不同于传统的基于像素的方法,面向对象的方法更侧重于将相似的像素组合成区域,这样可以获得更稳定和有意义的信息。 - 多尺度分析:通过调整分割尺度参数,可以在不同层次上对影像进行分析,这对于复杂地物的识别尤为重要。 - 自适应性:该算法可以根据特定的分析任务或感兴趣的目标动态调整分割尺度,这意味着用户可以根据实际需求灵活选择合适的分割级别。 - 异质性最小化:通过寻找相邻区域之间的最小异质性来指导区域合并过程,确保每个分割后的区域内部尽可能一致。 具体实现方法的核心思想是在分割过程中不断寻找最佳的区域合并方案,直到达到所需的分割尺度为止。具体步骤如下: 1. 初始化:将每一个像素视为一个独立的区域。 2. 计算异质性:对于每一对相邻区域,计算它们之间的异质性。 3. 区域合并:选择异质性最小的一对相邻区域进行合并。 4. 重复:重复步骤2和3,直到达到预设的分割尺度。 5. 输出结果:输出最终的分割结果。 通过对不同类型的高分辨率遥感影像进行实验验证了该算法的有效性和实用性。结果显示,这种方法能够根据不同分析任务的要求自动调整分割尺度,从而获得更为准确和有意义的分割结果。此外,由于该方法考虑了地物的复杂性和多样性,在处理具有丰富空间结构信息的影像时表现出色。 面向对象的多尺度分割方法为高分辨率遥感影像的处理提供了一个有力工具。通过利用该方法,研究人员和工程师可以更有效地从高分辨率遥感影像中提取有用信息,从而推动遥感技术在更多领域的应用和发展。未来的研究方向可能包括进一步提高分割精度、扩展算法的应用范围以及与其他高级图像处理技术的结合等。
  • 邻接算法.caj
    优质
    本文提出了一种基于邻接图的对象导向遥感图像分割算法,通过构建和分析图像对象间的拓扑关系来优化分割效果,提高遥感图像信息提取精度。 基于邻接图的面向对象遥感图像分割算法用于处理高分辨率遥感图像。
  • 阴影消除(2008年)
    优质
    本研究聚焦于开发先进的算法和技术,用于处理和分析高分辨率遥感图像中的阴影问题。通过创新的方法去除或减少阴影干扰,提高图像解析精度及信息提取效率,为环境监测、城市规划等领域提供有力支持。 本段落提出了一种全自动彩色影像阴影去除算法,基于对阴影属性的分析。首先将图像转换为HSI(色调、饱和度、亮度)空间,并利用阴影区域亮度低且饱和度高的特点,结合小区域处理与数学形态学方法来精确定位阴影区域。接着,在各独立的阴影区域内以及其邻近非阴影区域中分别进行匹配补偿操作,针对I、H和S分量图中的变化做出调整。最后将图像转换回RGB空间以完成去影过程。实验结果显示该算法能够在不改变原始影像非阴影部分信息的前提下有效去除阴影影响。
  • 在土地复垦中的报告
    优质
    本报告探讨了高分辨率遥感影像技术在土地复垦领域的应用价值与方法,通过实例分析展示了其在监测、评估和规划方面的优势。 利用遥感技术进行土地复垦的动态监测,可以获取不同时间点的土地变化信息。
  • 深度学习的语义
    优质
    本研究利用深度学习技术,针对高分辨率遥感影像进行高效准确的语义分割,旨在提升图像解译精度与自动化水平。 高分辨率遥感影像包含大量地理信息。然而,基于传统神经网络的语义分割模型难以从这些图像中的小物体提取高层次特征,导致较高的分割错误率。本段落提出了一种改进DeconvNet网络的方法,通过编码与解码结构特征连接来提升性能。在编码阶段,该方法记录池化操作的位置并在上采样过程中加以利用,有助于保留空间信息;而在解码阶段,则采用对应层的特征融合以实现更有效的特征提取。训练模型时使用预训练模型可以有效扩充数据集,从而避免过拟合问题的发生。 实验结果显示,在优化器、学习率和损失函数适当调整的基础上,并通过扩增的数据进行训练后,该方法在验证遥感影像上的分割精确度达到了约95%,明显优于DeconvNet和UNet网络的表现。
  • 多光谱融合
    优质
    本研究聚焦于提升遥感图像质量,采用先进的多光谱图像超分辨率技术进行图像融合,以实现高空间分辨率与高光谱信息的完美结合。 传统遥感图像融合方法未能充分利用低分辨率多光谱图像的空间细节信息。为此,本段落提出了一种基于超分辨率处理的遥感图像融合技术,旨在提升低分辨率多光谱图像的空间质量同时保留其光谱特性。具体而言,通过稀疏表示的方法对原始低分辨多光谱影像进行增强处理;然后利用小波变换将亮度分量Y从经过超分辨率处理后的多光谱图与全色图像相融合;最后通过逆向的YUV转换获得最终的融合结果。 实验在真实遥感数据上验证了该方法的有效性,显示其能够显著提高融合后影像的空间细节表现力,并且不会影响到原始的光谱特征。对比分析进一步证实了所提方案的优势所在。
  • 深度学习的识别与
    优质
    本研究聚焦于利用深度学习技术提升高分辨率遥感影像的识别和分类精度,旨在探索有效的算法模型,以应对复杂多样的地表特征挑战。 深度学习在高分辨率遥感图像识别与分类中的研究应用了深度学习技术来处理卫星图像。