Advertisement

金属薄膜材料在超短脉冲激光烧蚀中的热效应分析

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究聚焦于超短脉冲激光对金属薄膜材料烧蚀过程中的热效应,通过理论建模与实验分析,探讨不同参数条件下的烧蚀机理和热响应特性。 基于双曲双温两步热传导模型,并采用具有人工粘性和自适应步长的有限差分算法,对超短脉冲激光辐照金膜时的温度场进行了数值模拟计算。研究了不同能量密度及脉宽条件下金膜表面温度分布情况;分析了电子-晶格耦合系数对薄膜体内温度变化规律以及达到热平衡所需时间的影响。结果表明:激光脉冲的能量密度和宽度显著影响着电子温度峰值;而电子与晶格的耦合强度则决定了二者温升速率及相互作用的时间长度;在接近表面区域,电子温度及其梯度迅速增大至最大值,相应的高能电子崩力是导致金属薄膜早期力学损伤的主要原因。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究聚焦于超短脉冲激光对金属薄膜材料烧蚀过程中的热效应,通过理论建模与实验分析,探讨不同参数条件下的烧蚀机理和热响应特性。 基于双曲双温两步热传导模型,并采用具有人工粘性和自适应步长的有限差分算法,对超短脉冲激光辐照金膜时的温度场进行了数值模拟计算。研究了不同能量密度及脉宽条件下金膜表面温度分布情况;分析了电子-晶格耦合系数对薄膜体内温度变化规律以及达到热平衡所需时间的影响。结果表明:激光脉冲的能量密度和宽度显著影响着电子温度峰值;而电子与晶格的耦合强度则决定了二者温升速率及相互作用的时间长度;在接近表面区域,电子温度及其梯度迅速增大至最大值,相应的高能电子崩力是导致金属薄膜早期力学损伤的主要原因。
  • 重复频率照射下模拟
    优质
    本研究通过数值模拟方法探讨了金属材料在不同参数重复频率脉冲激光照射下产生的热效应,为先进制造技术中的激光加工提供理论指导。 在不同占空比的重复频率脉冲激光照射下,对金属材料前后表面的温升特性和烧蚀深度的变化规律进行了数值模拟,并分析了材料厚度及物性的影响。结果显示,材料前表面的温度变化曲线呈现锯齿状;当激光占空比较小或材料较薄时,后表面温度升高明显且烧蚀程度更深;与连续激光相比,重复频率脉冲激光更有利于金属材料的加热和烧蚀过程。
  • Comsol双温模型和半导体用——移动仿真及固体传
    优质
    本文探讨了COMSOL多物理场软件中激光双温模型的应用,着重于金属与半导体材料在脉冲激光加工过程中的移动烧蚀仿真以及相应的固体内热传导特性分析。通过精确模拟激光与物质交互作用的过程,该研究为优化制造工艺提供了理论依据和技术支持。 COMSOL激光双温模型应用于金属与半导体材料的脉冲激光移动烧蚀仿真。 1. 通过模拟脉冲激光对材料进行移动烧蚀。 2. 使用COMSOL软件中的固体传热物理场,实现多物理场耦合仿真。 3. 对皮秒激光烧蚀后的材料进行后处理分析,包括温度分布、温度随时间变化曲线以及整个加工过程的动画展示。
  • COMSOL和连续与树脂仿真模型
    优质
    本研究利用COMSOL软件模拟分析了脉冲及连续波激光对金属和树脂材料的烧蚀过程,探讨不同参数下的烧蚀效率与质量。 模拟激光烧蚀典型靶材的过程涉及不同的激光体制(包括脉冲、连续和重频)以及多种材料(如铝合金和树脂)。模型还包括了铝合金的吸收率曲线,并可以根据具体需求进行定制更改。
  • 铝合仿真(COMSOL)
    优质
    本研究利用COMSOL软件模拟分析了单脉冲激光与铝合金表面相互作用过程中的烧蚀现象,探讨不同参数对材料去除效率的影响。 铝合金单脉冲激光烧蚀的COMSOL模拟研究
  • 表面后发射
    优质
    本研究探讨了通过激光技术对金属表面进行烧蚀处理,并对其产生的发射光谱进行了详细分析,旨在揭示材料特性与光谱特征之间的关联。 通过观测时间和空间分辨发射光谱的方法研究了脉冲激光烧蚀金属铝靶过程中产生的等离子体羽特性,并计算了其膨胀速度,讨论了大气中等离子体点燃的机制。
  • 表面飞秒和皮秒有限差
    优质
    本研究采用有限差分法对金属材料在飞秒及皮秒激光作用下的热传导过程进行数值模拟与分析,探讨不同时间尺度下激光加工机制及其微观结构变化。 为了描述飞秒激光烧蚀金属表面的过程,对双温方程进行了简化处理。采用有限差分法模拟了飞秒脉冲和皮秒脉冲激光在金属表面烧蚀过程中的温度场变化,并进行了一维数值分析。研究探讨了在飞秒领域内对双温方程约简的合理性。计算模型中,着重分析了电子与光子耦合系数大小对于金属表层电子温度的影响,同时考虑不同脉宽、能量密度及功率密度等因素的作用。研究表明,电子和晶格之间的耦合系数影响材料表面电子升温和两者之间温度同步的时间;相较于皮秒激光而言,在飞秒激光烧蚀过程中,脉冲功率密度是决定最终电子温度的关键因素之一;此外,利用飞秒激光可以实现金属表层(吸收系数的倒数)量级厚度范围内的加工。
  • 有限元法
    优质
    本研究探讨了有限元法在模拟脉冲激光加热过程中的应用,通过数值方法精确分析材料热响应特性,为工业加工提供理论支持。 基于ANSYS有限元分析的脉冲激光加热建模与仿真命令流的研究涉及了详细的步骤和参数设置,通过该过程可以有效地模拟不同条件下的热效应及其对材料性能的影响。此研究利用了ANSYS软件的强大功能来探索脉冲激光技术在工业制造中的应用潜力,并为相关领域的工程师提供了宝贵的参考信息和技术支持。
  • 研究多飞秒过程反射率变化对阈值影响
    优质
    本研究探讨了在多脉冲飞秒激光加工中,材料表面反射率的变化如何影响激光烧蚀阈值,深入分析其内在机理。 为了提高飞秒激光微加工的精度,本研究探讨了多脉冲飞秒激光烧蚀积累效应形成的机理。以铜靶为例,采用时域有限差分法(FDTD)求解双温方程,并分析了电子、离子亚系统温度及激光烧蚀阈值随反射率变化的规律。结果显示,在多脉冲激光烧蚀过程中,前一个脉冲会破坏靶材表面结构,导致后续脉冲的反射率下降和烧蚀阈值显著降低。这解释了在多脉冲飞秒激光加工中观察到的烧蚀阈值不断变化的现象。同时表明,在进行多脉冲飞秒激光微加工时,必须考虑反射率的变化对激光烧蚀的影响以实现高精度加工。
  • 切割Al2O3陶瓷板
    优质
    本研究探讨了使用脉冲激光技术对Al2O3陶瓷板材进行切割时产生的热应力影响。通过实验分析和数值模拟,评估不同参数条件下热应力分布及其对材料微观结构的影响,为精密加工提供优化方案。 运用热应力切割脆性材料的可控断裂激光切割技术,在切割过程中通过激光能量诱发拉应力使材料沿光束移动方向分离以完成切割。这一过程类似于裂纹扩展,并且是可控制的。基于固体热传导理论,利用有限元方法建立了三维热弹计算模型。通过对脉冲激光扫描切割Al2O3陶瓷板时温度场和应力场变化进行模拟分析,获得了在切割过程中温度场与热应力场的分布及其随时间的变化规律。此外,研究了激光照射期间,在陶瓷板材厚度方向上压应力转变为拉应力的情况,并根据可控断裂原理解释了脉冲激光扫描导致裂纹沿指定路径扩展的原因。