
以太网交换芯片数据资料
5星
- 浏览量: 0
- 大小:None
- 文件类型:PDF
简介:
本资料涵盖以太网交换芯片的关键技术参数、性能指标及应用指南,旨在帮助工程师和研究人员深入了解并有效运用相关硬件。
以太网交换芯片是网络设备的核心组成部分之一,在局域网中的数据包高效转发方面扮演着关键角色。Broadcom 56504 和 56300 是这一领域的代表性产品,它们的设计与应用展现了现代通信技术的高度成熟。
了解这些交换芯片的工作原理之前,有必要先掌握以太网交换芯片的基本架构及其处理数据包的流程。通常来说,一个典型的以太网交换芯片包含以下关键模块:
1. GEXE接口模块:即千兆以太网和10G 以太网接口模块,它提供物理层(PHY)和媒体接入控制(MAC)功能。
2. CPU接口模块:实现交换芯片与CPU之间的通信,常通过CMIC接口完成,该接口采用PCI总线进行数据传输。
3. 输入输出匹配修改模块:根据包头信息执行匹配及必要的调整操作。
4. MMU模块:存储管理单元负责对包的缓冲区处理。
5. L2转发模块:基于MAC地址的数据包路由功能实现层二(L2)通信。
6. L3转发模块:提供基于网络层级的信息进行数据传输的功能,支持三层(L3)通信。
7. 安全模块:包括过滤不合规的数据包等安全处理措施。
8. 流分类模块:依据特定标准将流量归类,并根据类别执行不同的策略。
Broadcom 56504 芯片具备24个千兆以太网(GE)端口和四个10G 端口,这些端口既可用于设备间的堆叠连接也可作为上行链路或级联使用。此芯片能够通过多种接口与CPU进行通信,例如SPI+MII、I2C+MII、系统总线+MII 和 SMI+MII。
接下来重点讨论交换芯片处理数据包的流程:当一个数据包进入交换芯片时,首先会匹配其头部字段的信息;随后经过安全引擎过滤;然后根据MAC地址和VLAN信息进行L2或L3转发。在此过程中可能还会对流分类执行相应的操作如丢弃、限速或者修改VLAN等处理措施。最后依据调度策略将数据包放入不同优先级的队列中,并从相应端口发送出去。
在 L2 转发流程中,交换芯片通过MAC地址进行学习和老化过程以及基于 VLAN 的转发操作。L2 转发是交换芯片的基本功能之一,它包括对进入的数据包执行 ingress 过滤、MAC 地址的学习与老化处理、根据 MAC+VLAN 信息的路由决策等步骤,并且还涉及到广播和洪泛机制及生成树控制。
此外,在 L2 转发流程中还包括一系列重要的表项设置操作,比如 PORT 表。PORT 表管理着端口相关的设定值,包括为端口配置默认 VLAN ID(PVID)、优先级等级(PORT_PRI)以及启用流分类等选项。同时还可以针对端口进行 VLAN 转换的开启、未命中时丢弃处理和 ingress 过滤等功能。
L2 转发流程中还涉及地址老化机制,即在交换芯片内部存在一个定时器来跟踪地址的有效性;如果在一个设定的时间间隔内没有对某个地址产生访问,则该条目会被标记为无效。这一设计确保了 MAC 地址表的时效性和准确性,避免因过期记录导致错误转发。
综上所述,Broadcom 56504 和 56300 芯片通过其复杂的模块化结构,在数据包处理方面表现出高效性与智能化的特点,为网络系统的稳定运行提供了坚实保障。这些交换芯片的应用使得设备能够实现高速、高效的通信需求,满足现代网络环境的高标准要求。
全部评论 (0)


