Advertisement

负压电荷泵在电源技术中的工作原理

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
负压电荷泵是一种利用半导体技术制造的电压转换电路,能够产生低于输入电压的输出电压。本文将详细介绍其工作原理及其在现代电源技术中的应用和优势。 根据Dickson电荷泵理论可以推广得到产生负电压的电荷泵电路。其工作原理如图1所示:基本原理与Dickson电荷泵一致,但利用了电容两端电压差不会跳变的特点,在保持充放电状态时,电容两端的电压差会恒定不变。通过将原来的高电位端接地,可以获得负电压输出。 该电路实际上是由基准、比较、转换和控制电路组成的系统,具体包括振荡器、反相器及四个模拟开关,并外接两个电容C1、C2来构成电荷泵电压反转电路。 图1展示了负压电荷泵的工作原理。其中,振荡器输出的脉冲直接控制模拟开关S1和S2;此脉冲经反相后用于控制模拟开关S3和S4。当模拟开关S1、S2闭合时,...

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    负压电荷泵是一种利用半导体技术制造的电压转换电路,能够产生低于输入电压的输出电压。本文将详细介绍其工作原理及其在现代电源技术中的应用和优势。 根据Dickson电荷泵理论可以推广得到产生负电压的电荷泵电路。其工作原理如图1所示:基本原理与Dickson电荷泵一致,但利用了电容两端电压差不会跳变的特点,在保持充放电状态时,电容两端的电压差会恒定不变。通过将原来的高电位端接地,可以获得负电压输出。 该电路实际上是由基准、比较、转换和控制电路组成的系统,具体包括振荡器、反相器及四个模拟开关,并外接两个电容C1、C2来构成电荷泵电压反转电路。 图1展示了负压电荷泵的工作原理。其中,振荡器输出的脉冲直接控制模拟开关S1和S2;此脉冲经反相后用于控制模拟开关S3和S4。当模拟开关S1、S2闭合时,...
  • 四倍升
    优质
    四倍升压电荷泵是一种高效的电压转换电路,在电源管理中扮演重要角色。通过多级开关网络实现输入电压至四倍输出的功能,广泛应用于便携式电子设备和电池供电系统。 图1展示了四倍升压电荷泵的工作原理示意图,在此过程中,电容C1充电后其下端电压为UDD,上端电压达到2UDD;同样地,电容C2完成充电后的上下两端分别对应着UDD和3.3UDD的电压水平。与此同时,另一并行过程发生在电容C3与输出电容器(记作COUT)之间:它们各自下部保持在UDD的电压状态,而上端则被提升至4UDD,并为系统提供IOUT电流。 图2展示了依据图1中原理构建的传统四倍升压电荷泵电路。为了实现这一功能,在M1到M4这四个开关器件(这里指代高耐压型场效应管)上施加了4UDD的电压,因此必须选择能够承受这种高压条件下的元件来确保系统的正常运行和安全操作。该电荷泵变换器的工作效率可以通过特定公式进行评估计算。 需要注意的是,在上述描述中没有提及任何联系信息或网址链接等额外内容。
  • 优质
    电荷泵是一种利用开关电路和电容器来提升或降低电压的器件。它通过充电、存储及转移电荷实现电压变换功能,在便携设备中广泛应用。 电荷泵的基本原理是通过给电容充电来实现的。首先将电容连接到充电电路进行充电,然后将其与充电电路断开以隔离所充入的电荷,最后再将其连接至另一个电路中传递这些被隔离的电荷。可以形象地把这种传输电荷的过程中的电容视为一个“装满电子的水桶”。具体来说就是从一个大容器里把这个桶接满,关闭水源后将桶里的液体倒进另外一个容器。 电荷泵又被称为开关电容式电压变换器,是一种使用所谓的快速或泵送电容而不是依靠电感或者变压器来储存能量的直流-直流转换器(DC-DC变换器)。
  • 路与详解
    优质
    本文章详细介绍了电荷泵升压电路的工作原理和应用,帮助读者理解其内部结构及如何实现电压提升功能。 电容式电荷泵通过开关阵列、振荡器以及逻辑电路和比较控制器实现电压提升,并利用电容器来存储能量。由于其工作频率较高,可以使用小型陶瓷电容器(如1μF),这类电容器占用空间小且成本较低。
  • 基本概述
    优质
    本文介绍了电荷泵的基本工作原理,包括其在电压转换中的作用机制和实现方法。适合初学者快速了解电荷泵技术。 理解电荷泵的基础知识对于掌握其在PLL(相位锁定环)电路中的工作原理及其选择具有重要意义。
  • 设计及其
    优质
    本文章探讨了电荷泵的工作机制和设计原则,并深入分析其在各类电子电路中发挥的关键作用。 电荷泵的基本原理是通过不同连接方式对电容进行充电和放电来实现电压转换功能,如升压、降压及产生负压等。例如,在二倍升压电路中,当V2为低电平时,电源V1通过D1和C1给C2充电;此时C2两端的电压呈现上正下负的状态。而当V2变为高电平输出时,其与C1上的电压叠加,并通过D3向负载供电同时继续对C2进行充电。忽略二极管压降的情况下,可以得出公式Vo=V2+V1(其中Vo是输出端的电压值;V2为电源V2在高电平时的输出)。由于整个电路的工作过程主要是基于电容充放电完成的,因此需要掌握的关键公式就是描述这一过程的I*T=ΔV*C,这里T代表了充放电周期的时间长度。
  • DC/DC开关设计
    优质
    本论文探讨了负电压DC/DC开关电源的设计原理和技术应用,旨在提高电源转换效率和稳定性。通过优化电路结构与控制策略,实现高性能电源解决方案。 以往的隔离开关电源技术通过变压器实现负电压输出,这会导致电源体积增大及电路复杂性增加。随着专用集成DC-DC控制芯片的发展,非隔离式负电压开关电源因其结构简单、体积小巧而在电子测量设备中越来越受欢迎。因此,对这类电源的研究具有重要的实用价值。 传统的非隔离负电压开关电源主要有两种电路拓扑(如图1和图2所示)。根据图3的滤波输出电容充电电流波形可以看出,在相同电感峰值电流的情况下,采用图2结构可以得到更小输出纹波的负电压,并且其负载能力也更强。然而,由于图2中的开关器件需要连接到电源的负极,这使得控制电路比图1更为复杂,因此目前市场上尚未实现这种电路结构。
  • 生成
    优质
    本工作原理图详细介绍了负电压生成电路的设计与运作机制,包括关键元件的选择及配置方法,适用于电子爱好者和工程师深入理解相关技术。 正电压的应用无需赘述,在电子电路设计中我们经常需要使用负电压,比如在运放应用时常常要为其提供一个负的电源电压。下面以将5V正电压转换为-5V为例,简要介绍其电路实现方法。
  • 整流桥分析
    优质
    本文详细解析了整流桥在电源技术领域的核心作用及其工作原理,并探讨其应用优势与局限性。 整流桥是一种将四个二极管封装在一起的设备,用于实现桥式整流功能,并通过引出四个引脚来简化电路连接。这四个引脚中包含两个直流输出端(标记为+或-)以及两个交流输入端(标记为~)。使用整流桥时需考虑其最大工作电流和最大反向电压。 图一展示了整流桥的工作原理,而图二则显示了不同类型整流桥的外观。值得注意的是,有些整流桥上会有一个孔位,用于安装散热器以帮助设备在高负载条件下正常运作。这款电源所采用的一体式整流桥即具备上述功能和特点。