Advertisement

BOOST主回路与BUCK主回路的电源模块设计,含原理图及PCB布局-电路方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目专注于BOOST和BUCK型电源模块的设计,详细阐述其工作原理,并提供具体原理图及PCB布局,为电路设计者提供实用参考。 BOOST主回路和BUCK主回路是电源模块的重要组成部分。主回路由主电源、开关、熔断器、继电器控制接点、热继电器以及电机等元件构成。这两类电路的主要功能是对主机电源输送过来的电流进行电压转换,并对输入电流进行整形和过滤,以去除各种杂波和干扰信号,确保电源模块能够稳定工作。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • BOOSTBUCKPCB-
    优质
    本项目专注于BOOST和BUCK型电源模块的设计,详细阐述其工作原理,并提供具体原理图及PCB布局,为电路设计者提供实用参考。 BOOST主回路和BUCK主回路是电源模块的重要组成部分。主回路由主电源、开关、熔断器、继电器控制接点、热继电器以及电机等元件构成。这两类电路的主要功能是对主机电源输送过来的电流进行电压转换,并对输入电流进行整形和过滤,以去除各种杂波和干扰信号,确保电源模块能够稳定工作。
  • STM32F405RGT6 控板 PCB
    优质
    本项目提供STM32F405RGT6主控板的详细原理图和PCB电路设计,涵盖电源管理、时钟配置、GPIO设置及外设接口布局。 STM32F405RGT6主控板参数如下: - 板子尺寸:70mm x 60mm - 供电电压:24V - 内置电源模块,支持从24V转为5V和从5V转为3.3V - 具有SWD接口、CAN总线通信接口以及遥控DBUS接口 - 提供串口调试接口及PWM输出接口 - 附件包含STM32F405RGT6主控板的原理图和PCB,使用AD软件可以打开。 - PCB截图与原理图已提供。
  • APW7137升压PCB)-
    优质
    本项目提供了一套详细的APW7137升压模块设计方案,包括完整的电路原理图及PCB布局文件。适合需要高效电源管理的电子设备应用。 项目目前处于样品制作阶段,后续会继续更新相关信息。
  • 4可控硅实现(PCB)-
    优质
    本项目详细介绍了4路可控硅模块电路的设计过程,包括工作原理、硬件选型及原理图和PCB布局。通过该设计方案,可以轻松实现对多路电源的高效控制。 《四路可控硅模块电路设计方案详解》 在电子工程领域,可控硅模块是常见的功率控制元件,在电源调压、电机控制等领域有着广泛应用。本段落将深入解析一款4路可控硅模块的电路设计方案,包括其原理图和PCB设计,帮助读者理解和应用这类电路。 一、可控硅基本概念 可控硅是一种半导体器件,具有三个PN结结构,能够实现电流的无级调控功能。与普通二极管相比,在适当的触发条件下可以保持导通状态,并且即使去除触发信号也能维持这种状态,因此在电路中起到开关作用。 二、4路可控硅模块设计原理 4路可控硅模块通常由四个独立的可控硅单元组成,每个单元都能单独控制一路电流。每个可控硅单元包括一个主控元件以及相关的驱动和保护电路。驱动电路负责为可控硅提供触发脉冲使其开启;而保护电路则在异常情况下(如过电压、过流)确保器件的安全。 1. 原理图分析 根据提供的原理图,我们可以看到4个可控硅TR1至TR4并联连接,每一路都有独立的控制输入端(G、K),以及共阳极(A)和共阴极(C)。G与K之间通过电阻和电容构成触发电路,在适当脉冲电压作用下使可控硅导通。此外,电路中可能还包括热敏电阻或熔断器作为过温保护。 2. PCB设计要点 PCB设计对于保证模块的稳定性和可靠性至关重要。良好的布局可以减少寄生参数、提高工作效率,并防止电磁干扰的发生。在设计过程中需要注意以下几点: - 尽量缩短大电流路径,降低线路电阻以减小功率损耗。 - 控制信号线应远离高电压和大电流线路以防耦合干扰。 - 可控硅与散热片之间需保持良好的电气及热接触以便于散热。 - 保护电路元件的位置安排合理,在异常情况下可以快速响应。 三、实际应用与注意事项 4路可控硅模块广泛应用于多通道电源调节、照明控制和电机调速等领域。使用时需要注意以下几点: - 触发脉冲的频率和宽度需满足可控硅的工作要求,避免误触发或不触发。 - 模块的额定电流和电压应大于实际工作需求以确保足够的安全余量。 - 安装过程中要保证良好的散热条件防止过热导致器件损坏。 - 使用期间需要定期检查及时发现并解决潜在问题。 总结来说,4路可控硅模块通过巧妙设计实现了对多路负载独立控制。理解其工作原理和PCB设计有助于我们在实际项目中更高效地应用这一技术,从而提升系统性能及稳定性。
  • MPU6050PCB
    优质
    本项目提供了一套详细的MPU6050六轴运动跟踪传感器模块电路设计,包括完整的原理图及PCB布局文件,适用于各类运动检测应用。 该模块是MPU6050模块,它由三轴加速度计和三轴陀螺仪组成一个六轴传感器。对于对此内容感兴趣的用户可以加入航模相关DIY交流群以进行更深入的讨论与学习,共同进步。不过请注意,这里没有提供具体的联系方式或链接信息。
  • PCI9052PCB
    优质
    本资料深入解析PCI9052相关电路设计,包含详尽的电路原理图与专业PCB布局方案,助力工程师优化硬件架构。 PCI9052的电路原理图和PCB图可以为进行PCI总线设计的人提供帮助。文件名为“设计 PCI9052原理图.rar”,大小为48.18 KB,已下载198次,下载需消耗积分:资产-2 信元,支出2 信元。
  • MP1584降压分享,PCB文件-
    优质
    本资料提供MP1584电源模块降压电路设计方案,包含详细的原理图与PCB源文件。适合工程师深入学习和项目参考使用。 本设计基于MP1584芯片电源模块的降压型典型应用电路进行开发,并提供了原理图及PCB源文件(使用AD软件打开)。该芯片采用贴片8脚封装,工作电压范围为4.5至28V,频率为1.5MHz,输出电流可达3A。通过在MOS管Q上施加PWM开关信号来控制其导通与关断状态,从而使电感和电容充放电以实现电源的降压功能。MP1584芯片内部具备短路保护机制,当发生短路时阈值为4.87A,在过载情况解除后能够立即恢复工作。 经过实测验证:在输入电压26.3V的情况下,该模块可以稳定输出5V/3A的电力,并且带负载运行五分钟后的温升约为35°C。MP1584电源模块适用于多种应用场景,包括DIY移动电源、监控系统供电、儿童车电源、摄像头供电以及车载设备等;此外,在对体积和重量有严格要求的应用场合中(例如航空模型),它同样表现出色。
  • 光纤PCB
    优质
    本资源提供详细的光纤模块电路设计及PCB布局方案,涵盖原理图解析、布线规则和优化技巧等内容,适合硬件工程师参考学习。 光纤模块是现代通信系统中的关键组件之一,主要用于高速数据传输。理解其工作原理及PCB设计对于掌握其功能至关重要。本段落将深入探讨LAN8720A光纤模块与PCB设计的相关知识点。 LAN8720A是由Microchip Technology制造的一款以太网物理层(PHY)芯片,支持10/100Mbps的以太网连接。该芯片集成了RJ45接口,并能兼容光纤和双绞线两种传输介质,为网络设备提供了灵活的选择方案。在使用光纤模式时,LAN8720A通常与SFP模块配合工作,实现光电信号的有效转换。 PCB设计方面,一个完整的电路板布局文件(如PCB2.PcbDoc)包含了所有组件的位置和布线路径信息。设计师需要考虑电气性能、信号完整性和热管理等多个因素来优化设计方案。例如,在LAN8720A的电源引脚附近放置滤波器可以减少噪声干扰;同时,缩短高速信号线路并避免不必要的走线弯曲有助于降低信号衰减或干扰的可能性。 PCB元件库文件(如PCB2.PcbLib)则包含了所有电子组件的3D模型和电气特性信息。设计师必须确保这些数据准确无误以保证电路板能够正确组装并通过功能测试。此外,原理图文档(例如Sheet2.SchDoc)展示了各个组件之间的逻辑连接关系,并帮助工程师更好地理解整个系统的运作机制。 在设计光纤模块时需要注意以下几点: 1. 光电隔离:为避免光电信号间的干扰问题,在两者之间加入光电隔离器是必要的。 2. EMI防护措施:合理布局并使用屏蔽材料可以有效减少电磁辐射,从而提高系统稳定性。 3. 热管理策略:考虑到芯片散热需求可能需要安装额外的散热装置或采用特殊材质以提升热性能表现。 4. 尺寸优化设计:由于光纤模块通常体积较小且空间有限制,在PCB布局时应尽量节省空间。 综上所述,LAN8720A光纤模块的PCB设计是一个涉及多个方面的复杂过程。从芯片选择到信号完整性分析再到电气隔离和热管理等环节都需要精心规划才能确保最终产品的可靠性和高效性。通过对相关文件进行详细研究与优化可以为用户提供高质量、稳定的网络通信解决方案。
  • 基于STM8控芯片可调-
    优质
    本设计提出了一种以STM8为主控芯片的可调电源电路方案,详细介绍了硬件结构和工作原理,并提供了完整的原理图。 我用立创EDA绘制了一个工程,发现它比Altium Designer更方便快捷,在寻找封装方面也不需要像在AD那样麻烦。这个设计采用的是STM8S103F3P6单片机,并且去掉了不常用的USB接口,所有剩余的引脚都已全部引出;另外我还用一个引脚来做LED灯指示功能。 最初的版本包含了一个未使用的端口,现在所有的元件都是使用了尺寸为0402的小型封装。这款微控制器基于STM8内核,并具有三级流水线和哈佛结构设计,配备有8k的闪存存储器,对于一般的应用来说已经足够用了;擦写次数可达1万次以上。 不过它的RAM只有可怜的一千字节,确实有点捉襟见肘了。中断控制器最多可以支持27个不同的中断源,并且内置了一个晶振元件以提供稳定的时钟信号来源。从性能上来看应该比常见的Atmega328P要优秀一些:它拥有16位定时器功能(可实现三个互补输出,同时具备死区控制特性),IIC通信协议支持最高可达400kHz的传输速率;SPI接口则可以达到最高速度为8MHz。 这就是这个微控制器的基本概述。我将原本使用的LDO稳压芯片更换成了更为经济实惠且性能可靠的XC6206系列,不仅节省了电路板的空间占用率还降低了物料清单的成本开销。 此外我还分享了一个开源的可调电源项目,其主控单元正是这款STM8S103F3P6微控制器。
  • 12V 15W 开关PCB-
    优质
    本项目专注于12V 15W开关电源的设计与优化,涵盖详细的电路方案和高效PCB布局技巧,旨在提高电源效率与稳定性。 本款工业级开关电源经过了多种测试(包括高低温、PF值、纹波、效率及各种保护电路的安规),其最大输出电压为12V,功率可达15W。该产品采用L6562+PF103芯片设计,其中L6562是一种改良版的功率因数修正器,具有以下主要特性:可调输出电压精度高、启动电流微小且电源电流低、内置电流检测滤波器及内部启动定时器。附件包含使用AD绘制的开关电源原理图和PCB图供有需要的人参考。