Advertisement

51单片机带缓冲区的串口程序

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本段落介绍如何编写基于51单片机的带缓冲区的串行通信程序。通过有效管理数据传输过程中的缓存,优化了通讯效率和稳定性。 使用51单片机的串口编写了串口程序,并设计了一个可自定义大小(默认为60字节)的缓冲区处理程序。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 51
    优质
    本段落介绍如何编写基于51单片机的带缓冲区的串行通信程序。通过有效管理数据传输过程中的缓存,优化了通讯效率和稳定性。 使用51单片机的串口编写了串口程序,并设计了一个可自定义大小(默认为60字节)的缓冲区处理程序。
  • 51通信
    优质
    本项目专注于基于51单片机的串行通讯编程技术,提供详细的代码示例和实现方法,帮助学习者掌握在嵌入式系统中进行高效数据传输的能力。 此程序的主要功能是实现电脑向单片机发送数据,并由单片机将接收到的数据回传给电脑,在串口调试软件上显示出来。为了节约资源,本程序采用中断方式来处理通信任务。 首先在波特率计算器中生成一个9600的波特率配置文件以确保通信速率的一致性。接下来打开串口中断功能以便单片机能够按照固定波特率发送数据帧。接收与发送部分通过定义结构体实现:接收到的数据被存储在一个预先定义好的位置,即程序中的receiveData变量中。 使用定时器1触发中断处理函数,在该中断服务例程中完成数据的收发操作。需要注意的是,所有涉及串口通信的发送和接收代码都必须在相应的中断函数内编写执行,否则可能会导致持续不断的误收或误发问题。经过测试表明,无论传输何种类型的数据(字符串、数字或者汉字),本程序都能正常工作。 总的来说,在进行51单片机串行通讯开发时建议先明确设计思路再着手编程实践,这有助于形成个人独特的解决方案并提升自己的编程技能水平。
  • 51驱动
    优质
    简介:本文档提供了一份详尽的指南和示例代码,用于开发基于51单片机平台的串行通信驱动程序。通过深入浅出地讲解原理与实践操作,帮助工程师们快速掌握并优化51单片机系统的串口通信功能。 我正在使用51单片机的串口驱动,并且觉得它非常好用。
  • STM32接收环形
    优质
    本文章介绍如何在STM32微控制器中实现和使用串口接收环形缓冲区技术,提高数据处理效率并简化代码设计。 STM32串口接收环形缓冲区在基于ARM Cortex-M系列微控制器的嵌入式通信应用中具有重要作用,尤其是在使用STM32这类广泛采用的微控制器时更为关键。本段落深入探讨了该技术的设计原理、实现方法及其实际应用场景。 理解环形缓冲区概念是必要的前提。这种特殊的数据结构类似于首尾相连的数组,在数据填满后新进入的数据会覆盖最旧的数据,从而形成一种“先进先出”(FIFO)模式,特别适用于处理连续流数据。在STM32串口接收中,该技术被用于存储接收到的数据,并且能够避免由于频繁中断导致处理器效率下降的问题。 通常情况下,STM32的串口接收是通过中断服务程序(ISR)实现的。当新数据到达时会触发一个硬件中断事件,在ISR内将这些数据存入环形缓冲区中。为了保证数据完整性和准确性,需要采用适当的同步机制来防止多个任务同时访问同一缓冲区域,比如使用互斥锁或者信号量等方法。 环形缓冲区的具体实现通常包含以下几个方面: 1. 定义一个固定大小的数组作为存储空间。 2. 初始化头尾指针以指向该数组的起始位置。 3. 在数据插入时检查是否已满,并采取相应措施处理溢出情况。 4. 应用层程序通过更新读取指针来从缓冲区中取出数据,同时需要判断是否存在空运行的情况并进行适当处理。 5. 确保头尾指针在数组范围内正确循环移动。 文件中的具体代码可能涵盖了如何定义环形缓冲区结构、编写中断服务程序以及如何在主循环或任务中读取数据等内容。通过学习这些内容,开发者可以更好地掌握STM32串口接收环形缓冲区的实现技巧,并将其应用于实际项目开发当中。 总之,采用这种技术能够显著提高STM32微控制器上基于串行通信应用的工作效率和响应性能。对于希望提升此类系统稳定性和效能的专业人士来说,深入了解并熟练运用这项技能是非常有帮助的。
  • DS18B20与51调试
    优质
    本项目介绍如何利用51单片机通过串口对DS18B20温度传感器进行调试,包括硬件连接及软件编程方法。 DS18B20与51单片机的串口调试程序非常实用且方便初学者使用。
  • HC42-51调试
    优质
    本程序为HC42-51单片机设计,提供便捷的串口调试功能,适用于开发和测试阶段,帮助用户高效地进行数据传输与设备控制。 蓝牙串口调试涉及通过蓝牙技术建立虚拟的串行端口连接,以便在设备之间进行数据传输和通信测试。这一过程通常需要特定的应用程序或工具来配置蓝牙参数,并监控数据发送与接收的情况。此外,在进行调试时还需要确保硬件兼容性和软件设置正确无误,以实现稳定的数据交换。
  • STM32F4DMA双示例
    优质
    本示例程序展示了如何在STM32F4微控制器上使用串口和DMA实现双缓冲数据传输,有效提升通信效率。 基于STM32F4平台的串口DMA双缓冲实验程序具有空闲中断处理不定长数据的能力,并采用了FIFO循环结构以确保稳定性。该程序可以直接应用于项目中,在实测条件下,即使在2M波特率下也能保证稳定运行无压力。
  • 行Flash数据管理(
    优质
    本程序提供了一种对嵌入式系统中串行Flash存储器的数据缓冲区进行高效管理和优化访问的方法,确保了系统的稳定运行和性能提升。 串行FLASH数据缓冲区管理的程序实现代码如下: (此处省略具体的代码内容) 这段文字描述了如何编写用于管理串行Flash设备的数据缓冲区的程序,并提供了相关的实现代码。由于原文中并未提供具体的技术细节或示例代码,因此上述重写仅保留了对主题和目的的基本说明。
  • 51秒级脉
    优质
    本项目旨在编写适用于51单片机的高效秒级脉冲发生器程序,通过精确控制实现稳定的秒级时间间隔信号输出。 使用51单片机可以生成一个秒脉冲信号,该信号可用作计数器的输入源。
  • 基于51计算器
    优质
    本项目为基于51单片机开发的一款串口计算器程序,用户可通过串口输入数学表达式,实现基本运算功能。适合于嵌入式系统中的计算需求。 #include #include unsigned char tmp; unsigned char data1 = 0; unsigned int num1 = 0, num2 = 0, num3 = 0, fu = 0; int q[100] = {0}; int printf_flag = 0; int a = 0; int c = 0; void send_char(unsigned char txd); void send(unsigned int u); void main() { // EA = 1; //总开关 // ES = 1; //IE寄存器 通信开关 SCON = 0x50; // 设定串行口工作方式,工作模式为1 TMOD = 0x20; // 定时器1配置为8位自动重载模式,用于波特率生成 TH1 = 0xFD; // 波特率为9600 TL1 = 0xFD; PCON = 0x00; // 不进行波特率倍增 TR1 = 1; // 启动定时器1 while (1) { if (RI == 1) { // 检查是否有数据到来 RI = 0; data1 = SBUF; if ((data1 >= 0) && (data1 <= 9)) { num1 = 10 * num1 + (data1 - 0); } else if (data1 == + || data1 == - || data1 == * || data1 == /) { fu = data1; num2 = num1; num1 = 0; } else if ((data1 == =) && (fu == +)) { // 等于号判断加法 num3 = num2 + num1; printf_flag = 1; } else if ((data1 == =) && (fu == -)) { num3 = num2 - num1; printf_flag = 1; } else if ((data1 == =) && (fu == *)) { // 等于号判断乘法 num3 = num2 * num1; printf_flag = 1; } else if ((data1 == =) && (fu == /)) { num3 = num2 / num1; printf_flag = 1; } if (printf_flag == 1) { // 发送结果 send(num3); num1 = 0; num2 = 0; num3 = 0; // fu=0; data1 = 0; printf_flag = 0; } } } }