Advertisement

C++使用贪心算法解决删数问题。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
对于一个包含 n 个数字的整数 a,移除其中任意 k (≤ n) 个数字后,剩余的数字按照原有顺序排列组合成一个新的正整数。对于给定的整数 a,本题要求计算移除 k 个数字后所能得到的最小正整数。输入包含若干个测试用例。每个测试用例的第一行给出整数 a,第二行给出正整数 k,表示需要从 a 中移除 k 个数字。输入以空行结束,表示输入结束。对于每个测试用例,在单独的一行上输出移除 k 个数字后得到的最小正整数。 示例输入: 1785434 示例输出: 13

全部评论 (0)

还没有任何评论哟~
客服
客服
  • C++中使背包
    优质
    本文探讨了如何在C++编程语言环境中应用贪心算法来高效地解决经典的背包问题。通过选取最有价值的物品组合,以达到总价值最大化的目标。文中提供了详尽的代码示例和理论解析。 用C++贪心算法实现背包问题(非0-1背包)涉及将物品按单位重量价值从高到低排序,然后尽可能多地放入背包中直到装不下为止。具体步骤包括计算每个物品的单位重量价值,并根据这个值进行降序排列;接着遍历排好序的列表,逐步加入当前最优解直至达到容量上限。此方法适用于非0-1背包问题中的部分场景,在处理可分割或连续型资源分配时尤为有效。
  • C++ 中的
    优质
    本文探讨了在C++编程语言中实现贪心算法的方法,并通过具体实例——“删数问题”来解析如何应用该策略解决优化问题。 对于一个包含 n 个数字的正整数 a, 去掉其中任意 k (≤ n) 个数字后,剩下的数字按原次序排列组成一个新的正整数。请编写程序计算从给定的正整数 a 中删除 k 个数字后的最小数值。 输入格式: 有多组测试用例。 每组测试的第一行是一个正整数 a, 第二行为一个正整数 k ,表示需要从 a 中去掉的数字数量。 当没有更多数据时结束输入。 输出格式: 对于每一组测试,输出一行得到的最小值。 示例 输入: 1785434 2 输出: 13
  • TSP
    优质
    本研究探讨了运用贪心算法来求解经典的旅行商问题(TSP),旨在通过简便策略寻找近似最优解,以应对复杂的路线规划挑战。 旅行商问题(TSP)是一个经典的组合优化问题,在数学、计算机科学以及运营研究等领域有着广泛的应用价值。它要求在给定一组城市及其相互间的距离后,找到一条最短路径,该路径需经过每个城市一次并最终回到起点。 贪心算法作为一种解决问题的策略,其核心思想是在每一步选择当前最优解,并期望这些局部优化能累积为全局最优解。然而,在TSP问题中应用贪心算法时,它可能仅通过连接最近未访问的城市来构建解决方案,但这种方法并不能保证找到最短路径,因为它忽略了整体路径规划。 在VC++环境下实现TSP的贪心算法通常包括以下步骤: 1. **数据结构**:创建一个二维数组或邻接矩阵存储城市间的距离信息。 2. **初始化**:设定起点,并标记所有其他城市为未访问状态。 3. **贪心策略**:每次选择与当前路径中最近且尚未访问的城市,加入到路径中去。 4. **更新状态**:将已添加至路径中的城市标记为已访问过。 5. **结束条件**:当所有城市都被纳入路径后,返回起点形成闭合环路。 6. **计算总距离**:求解整个循环路线的累计长度。 7. **优化策略**:尽管贪心算法无法确保找到全局最优解,但可以通过引入回溯法或迭代改进等机制来提升性能表现。 在实际编码过程中可以利用C++标准库中的``和``等功能模块辅助实现上述步骤。例如,使用优先队列(如 `std::priority_queue`)根据距离对未访问城市进行排序处理。 测试与调试是确保算法有效性的关键环节之一,需要通过编写各种类型的测试用例来验证其在不同输入情况下的表现能力。 尽管贪心算法可能无法找到TSP问题的全局最优解,特别是在面对大规模的城市集合时更显不足。但对于理解问题本质和快速生成初步解决方案而言,它仍具有一定的实用价值,在资源有限或对时间效率有较高要求的情况下尤为适用。
  • TSP
    优质
    本研究探讨了利用贪心算法求解旅行商问题(TSP)的方法,通过局部最优策略逐步构建全局近似最优解,旨在为物流、网络路由等领域提供高效解决方案。 本压缩文档包含三个文件:使用贪心算法解决TSP问题的可执行源代码、Word文档报告以及实验测试数据。
  • 加油
    优质
    本研究探讨了如何运用贪心算法有效解决车辆在特定路线上的加油优化问题,旨在减少燃油成本和提高效率。通过分析不同情况下的最优策略,提出了一种高效的解决方案。 一个旅行家计划驾驶汽车从城市A前往城市B(出发时油箱是空的)。已知两座城市之间的距离为dis、汽车油箱容量为c、每升汽油可以行驶的距离为d,沿途共有n个加油站,并且第i个加油站离起点的距离记作d[i],该站每升汽油的价格为p[i], i=1,2,…,n。其中假设d[1]=0
  • C++中的背包
    优质
    本文探讨了如何运用贪心算法高效地解决C++编程语言中经典的背包问题,通过选取最有价值的物品组合来最大化总收益。 使用C++应用贪心算法求解背包问题可以作为算法课程设计答辩的内容。
  • C语言背包
    优质
    简介:本文探讨了使用C语言实现求解背包问题的贪心算法。通过优先选择单位重量价值最高的物品,实现了资源的有效利用和优化配置。 问题描述: 有一个容量为150的背包以及7个可以分割成任意大小的物品。目标是尽可能让装入背包中的物品总价值最大,但不能超过总容量。 给定的数据如下: - 物品:A B C D E F G - 重量:35 30 60 50 40 10 25 - 价值:10 40 30 50 35 40 30 算法描述: 贪心算法是指,在解决问题时,总是选择当前看来最优的选项。也就是说,不考虑整体的最佳解决方案,而是做出局部最佳的选择。 问题分析: 目标是找到一个策略使得装入背包中的物品总价值最大,并且这些物品的重量之和不超过150。 具体来说, - 目标函数:求∑pi的最大值(其中pi表示每个被选中物品的价值); - 约束条件:∑wi<=M,即所有选择的物品的总重量不能超过背包容量150; - 贪心策略:优先选取单位重量价值最大的物品。
  • 0-1背包
    优质
    本篇文章介绍如何运用贪心算法来求解经典的0-1背包问题。通过设定合适的评价标准,旨在寻找最优或近似最优解决方案。 贪心算法可以用来解决0-1背包问题的基础实现,并且该算法是可以运行的。
  • 着色(JAVA)
    优质
    本项目采用Java语言实现了一种基于贪心算法的图着色方案,有效解决了图论中的最小着色问题,减少了颜色使用量。通过优化节点遍历顺序,达到了较好的时间复杂度和空间效率。 着色问题是图论中的一个经典问题,其目标是给图中的每个顶点分配一种颜色,使得相邻的顶点颜色不同,并且使用最少的颜色数量来完成这一任务。我们通常采用贪心算法解决这个问题,这是一种局部最优策略,在每一步中选择当前最好的方案以期望得到全局的最佳结果。 ### 贪心算法原理 在解决问题时,贪心法总是试图做出最有利的选择,即每次选取一个使情况最佳化的步骤,并希望这些局部的优化能够累积成问题的整体最优解。对于着色问题来说,这意味着每当需要给未被着色且相邻顶点颜色最多的顶点分配一种新颜色的时候,就选择这种策略。 ### 着色问题中的贪心方法 1. **按序着色**:可以按照某种顺序对图的各个节点进行上色。常见的做法是先从度数(即连接边的数量)较高的节点开始,因为这些节点可能需要更多的颜色来避免冲突。 2. **最小增量策略**:这种方法从使用最少数量的颜色开始,并试图为新顶点选择一种不同于其相邻已着色顶点的最小可用颜色。如果找不到这样的颜色,则增加一个新颜色并继续尝试。 ### Java实现 在名为`GRcolor.java`的文件中,可以找到用来解决着色问题的一个Java程序的具体实现。这个程序通常包括以下几个部分: 1. **图的数据结构**:使用邻接矩阵或邻接表来表示给定的图形。 2. **颜色数组**:用于跟踪每个顶点当前被分配的颜色。 3. **上色函数**:根据贪心策略为每一个节点选择合适的颜色。 4. **输入处理**:读取图的信息,如顶点数和边的关系等。 5. **输出结果**:打印出各个顶点的最终着色情况及总共使用的不同颜色数量。 ### 程序执行流程 1. **初始化阶段**:创建表示图形的数据结构,并为所有节点的颜色设置初始值(未被分配)。 2. **遍历图并上色**: - 遍历每一个顶点,根据贪心策略为其选择一种颜色。 - 对于每个要着色的顶点,检查其相邻的所有已着色顶点的颜色,并为它挑选一个从未使用过的最小的新颜色。如果所有可能的颜色都被用过了,则增加新的可用颜色数量继续尝试。 3. **结束**:当所有的节点都已经被成功上色后,输出最终的结果。 尽管贪心算法在这个问题上的应用提供了简单而直观的解决方案,但它的效率和准确性在某些情况下可能会受到限制,并不能保证找到全局最优解。例如,在处理特定类型的图形时,如Königs theorem中提到的情况,可能通过其他更复杂的方法得到更好的结果。总的来说,虽然这种策略不一定总是最有效的选择方法,但在实际应用中它往往能够提供一个足够好的近似解决方案。 `GRcolor.java`文件中的代码分析可以帮助我们更好地理解如何在Java环境中具体实现这个算法。
  • 营地-
    优质
    本文章主要探讨如何利用贪心算法有效地解决营地设置中常见的优化问题。通过具体实例分析了该算法的应用过程及优势,为相关领域提供了一种高效的解决方案思路。 贪心算法是一种在每一步选择中都采取当前状态下最好或最有利的选择的策略,期望最终得到全局最优解。解决营地问题时,这种算法尤为适用。在这种场景下,一群露营者需要找到合适的地点设立帐篷,并且每个地点都有一定的容纳能力。目标是在满足所有人的需求的前提下,使得相邻营地之间的距离尽可能短以降低物资搬运和人员移动的成本。 通过贪心策略来求解这个问题的一个方法是每次选择能容纳最多人数并且与已选营地最远的地点。首先需要对所有营地按照其容量降序排列,并在相同容量下考虑位置信息,确保优先选取更远离已有营地的位置。这是因为每一步都做出局部最优的选择有助于最终得到全局最优的结果。 接下来,我们初始化一个空数组来存放已经分配给露营者的营地。从排序后的列表中开始选择未被使用的且与已选营地最远的地点,并将它们加入结果数组直到满足所有人的需求为止。在这个过程中,需要维护一个变量记录当前最远的距离以便于每次选取时找到距离该点最远的新位置。 在实现算法的过程中可以使用优先队列(如堆)来高效地操作未分配的营地列表,在处理空间信息时可能需要用到二维坐标系中的距离计算方法,例如欧几里得或曼哈顿距离。具体步骤如下: 1. 读取营地数据包括容纳人数和位置信息。 2. 对这些地点进行排序:首先根据容量降序排列然后考虑位置信息以确保选择更远的营地。 3. 初始化结果数组并设置最远距离变量为初始值。 4. 将第一个营地加入优先队列中,并开始循环处理剩余未分配的营地直到所有人都被安置为止。 5. 在每一次迭代过程中,选取与当前已选营地间距离最大的新地点作为下一步的选择。如果该选择满足需求,则更新结果数组和最远距离变量继续进行下一轮迭代。 需要注意的是,虽然贪心算法通常不能保证找到全局最优解但在处理特定问题如本例中的露营选址时往往能够得到较为满意的结果。为了验证其有效性,在实际应用中还需要设计各种测试用例包括边界条件来确保算法在不同情况下都能正常工作。 总之,通过采用合理的排序方法和优先级队列的使用,贪心策略能在解决营地分配问题上找到一种满足所有需求且使相邻营地距离最短的有效方案。此外,在编程实践中选择适当的数据结构并进行充分测试也是保证算法效果的关键因素之一。