Advertisement

利用粒子群优化算法,对刚柔混合机械臂的振动抑制规划进行设计。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该研究提出了一种基于基函数叠加与粒子群优化 (PSO) 协同的振动抑制轨迹规划方法。首先,对各关节变量与模态坐标之间的关系进行了推导,并利用正弦-梯形函数构建了每个关节的角速度,其中基函数的系数和幅值被定义为需要确定的参数;随后,将末端振动最小化的轨迹规划问题转化为一个关于这些待定参数的优化问题,并运用 PSO 算法以求得这些参数的最优值;最后,通过对双杆刚柔混合机械臂进行仿真验证,结果表明所提出的方法显著降低了机械臂末端的残留振动。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于策略
    优质
    本研究提出了一种利用粒子群优化算法为刚柔混合机械臂设计振动抑制策略的方法,有效提升了机械臂操作过程中的稳定性和精度。 本段落提出了一种结合基函数叠加与粒子群优化(PSO)的振动抑制轨迹规划方法。首先推导了各关节变量与模态坐标之间的关系,并采用正弦-梯形函数作为基函数来构造各个关节的角速度,其中基函数的系数和幅值为待定参数;然后将末端振动最小化轨迹规划问题转化为求解这些待定参数的优化问题,并利用PSO算法获取最优参数值;最后通过双杆刚柔混合机械臂进行仿真研究。结果显示,所提出的方法显著减少了机械臂末端的残留振动。
  • 基于研究(2009年)
    优质
    本研究针对机械臂运动规划问题,提出了一种改进的混合粒子群优化算法,旨在提高机械臂路径规划的效率和准确性。 多关节机械臂路径规划是一个复杂的非线性优化问题,很难找到单一的最优解。为此,提出了一种结合单纯形算法与粒子群算法的混合方法来解决此类问题。通过仿真试验发现,相较于传统的A*算法,该混合算法能够提供更高的求解精度。
  • MATLAB编程
    优质
    本项目采用MATLAB软件环境,实现粒子群优化算法的编程与应用。通过该算法解决各类优化问题,并对其性能进行分析和改进。 PSO算法是一种基于群体智能的随机优化技术,与遗传算法相比,两者都是通过迭代搜索来解决问题,但PSO算法不使用交叉、变异算子。粒子群优化算法利用个体间的协作寻找最优解,并借鉴了生物群体中的信息共享机制。该方法概念简单且易于实现,同时具有丰富的智能背景理论支持,既适用于科学研究也特别适合工程应用。
  • (结遗传和
    优质
    本研究提出了一种创新性的混合粒子群优化算法,该算法融合了遗传算法与传统粒子群优化技术的优势,旨在提高搜索效率和解的质量。通过实验验证,表明此方法在处理复杂优化问题上具有显著优势。 混合粒子群优化算法(Hybrid Particle Swarm Optimization, HPSO)是一种结合了多种优化策略的全局搜索方法,旨在提升基本粒子群优化(Particle Swarm Optimization, PSO)性能。在这种特定案例中,HPSO融合了遗传算法(Genetic Algorithm, GA)和模拟退火算法(Simulated Annealing, SA),以解决旅行商问题(Traveling Salesman Problem, TSP)。TSP是经典组合优化难题之一,目标是在访问一系列城市后返回起点时找到最短路径,并且每个城市仅被访问一次。 粒子群优化算法模仿鸟类觅食行为,其中每一个粒子代表一个可能的解决方案。在搜索过程中,“个人最好”和“全局最好”的位置更新了粒子的速度与位置。HPSO通过引入遗传算法中的交叉和变异操作来增强粒子群探索能力,并利用模拟退火机制避免陷入局部最优解。 遗传算法基于生物进化原理,包括选择、交叉及变异等步骤迭代优化个体(解决方案),逐渐提高种群的整体适应度。在解决TSP时,每个个体通常代表一种访问城市的顺序排列,而适应度函数则衡量对应路径的总长度。 模拟退火算法受金属冷却过程中晶体结构变化现象启发,在搜索解空间的过程中允许接受一定概率次优解以探索更广泛的可能解决方案集。对于TSP而言,通过设置温度参数和降温策略,模拟退火在接近最优解时逐渐减少对劣质解的接纳率,从而实现全局优化。 代码文件中的`hPSO.m`可能是混合算法的主要程序,定义了初始化粒子群、执行遗传及模拟退火步骤、更新位置速度以及判断终止条件等内容。而`hPSOoptions.m`则可能包含各种参数设置,如种群规模、迭代次数、学习因子和惯性权重等。 综合这些元素,HPSO算法通过整合三种优化策略,在解决TSP这类复杂问题时展现出强大的求解能力:既具备粒子群的全局探索特性,又拥有遗传算法的局部搜索优势及模拟退火的全局优化潜力。通过对参数进行调整与优化,可以进一步提升该方法在实际应用中的效果。
  • MATLAB中PID控
    优质
    本研究探讨了在MATLAB环境下应用粒子群算法对PID控制系统的参数进行优化的方法与效果,旨在提高控制系统性能。 基于粒子群算法的PID控制器优化设计在MATLAB中的应用研究。
  • GA-PSO路径_GA_PSO路径_GAPSO
    优质
    本研究结合遗传算法(GA)与粒子群优化(PSO),提出了一种高效的GA-PSO混合路径规划方法,旨在通过集成两者优势实现路径的全局搜索与局部精炼,有效解决复杂环境下的路径优化问题。 在机器人技术领域,路径规划是一个核心问题,它涉及如何让机器人从起点安全高效地到达目标点。GA-PSO-hybrid-master项目旨在利用遗传算法(GA)与粒子群优化算法(PSO)的混合方法解决这一挑战。 **遗传算法(Genetic Algorithm, GA)**是一种基于生物进化理论的全局搜索技术,通过模拟自然选择、基因重组和突变等过程来寻找最优解。在路径规划中,GA将每个可能的路径视为一个个体,并通过以下步骤寻找最佳路径: 1. **初始化种群**:随机生成一组初始路径作为第一代种群。 2. **适应度评估**:计算每个路径的适应度值,通常根据长度和避开障碍物的能力等因素进行评价。 3. **选择操作**:依据适应度值选出优秀的个体保留下来。 4. **交叉操作**:两个优秀路径之间进行交叉以生成新的路径。 5. **变异操作**:对部分路径进行微小改变,引入多样性。 6. **迭代**:重复以上步骤直到达到预设的终止条件(如代数或适应度阈值)。 **粒子群优化算法(Particle Swarm Optimization, PSO)**是一种受鸟类飞行行为启发而设计出来的搜索方法。每个粒子代表一个可能的解,并在其位置和速度上进行更新,以寻找最优路径。其关键概念包括: 1. **粒子的位置与速度**:每个粒子有一个当前位置和速度。 2. **个人最佳(pBest)**:记录个体经历过的最好情况。 3. **全局最佳(gBest)**:整个群体共享的最优解位置。 4. **更新规则**:根据自身历史最佳及全局最佳来调整其速度与位置,同时考虑惯性和随机因素。 **GA-PSO混合算法**结合了两种方法的优势,在本项目中,GA用于生成初始路径并保持多样性,而PSO在每次GA迭代后进行局部优化以提高路径质量。这种组合能够更有效地解决复杂的路径规划问题。 该项目的文件结构包括: - **README.md**:提供项目介绍和使用说明。 - **Report.pdf**:详细的实验报告,可能包含算法实现细节、实验结果及分析。 - **pso_ga.py**:主要代码文件,实现了GA和PSO的具体操作逻辑。 - **classes.py**:定义了路径、粒子等关键对象的类结构。 - **gui.py**:图形用户界面展示路径规划的过程与成果。 - **__main__.py**:程序入口脚本启动主流程。 通过该项目的学习者能够掌握如何将不同优化算法融合,解决实际问题,并了解设计完整路径规划系统的方法。对于机器人技术、人工智能和优化算法的研究人员及实践者而言,这是一个非常有价值的资源。
  • 基于改良时间最轨迹.pdf
    优质
    本文提出了一种改进的粒子群优化算法,用于解决机械臂的时间最优轨迹规划问题,提高了路径规划的效率和准确性。 本段落档探讨了改进粒子群算法在时间最优机械臂轨迹规划中的应用。通过优化传统粒子群算法的参数设置及引入自适应调整策略,提高了路径搜索效率与精度,在确保安全的前提下实现了更短的时间内完成预定任务的目标设定。该方法适用于复杂环境下的多自由度机械臂运动控制问题,并为实际工程中提高生产效率提供了新的解决方案思路。
  • 基于遗传轨迹:在MATLAB中运遗传
    优质
    本研究探讨了利用遗传算法于MATLAB平台优化机械臂轨迹的方法,旨在提升机械臂运动规划的效率与精度。通过模拟自然选择过程,该方法能有效解决复杂路径规划中的难题。 此代码提出了一种遗传算法(GA)来优化3连杆冗余机器人的点对点轨迹规划手臂。提议的GA的目标函数是同时最小化旅行时间和空间,并确保不超出预定义的最大扭矩值,且不会与机器人工作区中的任何障碍物发生碰撞。四次多项式和五次多项式用于描述关节空间中连接初始、中间和最终点的段落。使用了直接运动学以避免机械臂进入奇异配置状态。有关为该代码编写论文的内容,请参阅相关文献资料。
  • 变结构跟踪控(2012年)
    优质
    本文探讨了柔性机械臂在操作过程中的变结构跟踪控制策略及柔性振动的有效抑制方法,致力于提升其动态性能和稳定性。研究于2012年完成。 针对柔性机械臂的轨迹跟踪与弹性振动抑制问题,基于奇异摄动理论及两种时间尺度假设,将系统分解为慢变子系统(代表大范围刚体运动)和快变子系统(反映柔性振动)。对于慢变子系统的关节轨迹追踪采用变结构控制策略;而对于快变子系统的柔性杆件振动,则运用最优控制方法进行主动抑制。实验结果表明,该控制方案能够确保机械臂刚性部分的精确跟踪,并有效减少其柔性的弹性振荡。
  • 器人路径代码
    优质
    本代码采用粒子群优化算法为机器人自动规划最优行进路线,适用于复杂环境下的高效导航与避障。 可以运行的PSO粒子群机器人路径规划代码,思路清晰明了,对研究粒子群算法和移动机器人路径规划具有很大帮助。