本文探讨了如何在数学理想模型——完美球体与实际地理形态——地球表面上,实现等间距点的优化布局问题,并提出解决方案。
这是一个Python模块,用于在一个完美的球体或地球上生成(几乎)均匀分布的等距点。虽然在球面上实现超过五个真正等距离的点是不可能的,但该模块中的方法可以达到非常接近的效果(最大百分比偏差始终低于3.5%,通常更低)。尽管存在更准确的方法,但由于效率较低而未被采用。例如,一种常见做法是从其最近邻居连续排斥点直到满足阈值条件为止。
我设想了多种可能的应用场景,但最初编写这个模块是为了为工程师提供用于机器学习的数据集。具体而言,我希望在整个地球上均匀分布点,并允许将全局坐标分配给生成的每个点及其最近邻。
安装和使用该模块的方法如下:
```
pip install equidistantpoints
```
用法示例:生成并存储10,000个等距点。
```python
from equidistantpoints import EquidistantPoints
points = EquidistantPoints(num_points=10_000)
generated_points = points.generate()
```