Advertisement

半导体领域中机器视觉的应用——晶圆检测

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究探讨了机器视觉技术在半导体制造中的应用,特别聚焦于晶圆检测环节。通过高精度图像处理与分析,有效提升产品质量控制和生产效率。 经过光刻的晶圆在检测后会发现大量坏品,这些坏品通常会被标记出来;不完整的芯片也属于坏品。需要将良品识别并记录其坐标位置与角度信息,并传送给运动机构进行进一步调整。固定座上安装有固定的CCD、镜头和光源,无需移动。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ——
    优质
    本研究探讨了机器视觉技术在半导体制造中的应用,特别聚焦于晶圆检测环节。通过高精度图像处理与分析,有效提升产品质量控制和生产效率。 经过光刻的晶圆在检测后会发现大量坏品,这些坏品通常会被标记出来;不完整的芯片也属于坏品。需要将良品识别并记录其坐标位置与角度信息,并传送给运动机构进行进一步调整。固定座上安装有固定的CCD、镜头和光源,无需移动。
  • 优质
    简介:半导体晶圆测试是指在集成电路制造过程中对晶圆进行的一系列电气性能检测,确保每个芯片都符合设计规格和质量标准。 在晶圆制造完成后,进行的一项至关重要的测试是整个生产过程中的关键环节。这项测试旨在评估每个芯片的电气特性和电路功能。此阶段被称为“die sort”或“wafer sort”。 在这一过程中,晶圆被固定在一个带有真空吸力的工作台上,并与一组非常细小的探针接触以进行电性检测。这些探针对准并触碰每一个焊盘(pad),然后在电源驱动下对电路进行全面测试和数据记录。整个过程由计算机程序控制,确保了精确性和效率。 这项工作的主要目的是三方面的:首先,在晶圆被送往封装工厂之前,识别出所有合格的芯片;其次,通过这种方式来优化生产流程,并减少后续环节中的废品率。
  • 清洗
    优质
    半导体晶圆清洗是指在半导体制造过程中,使用化学溶液或物理方法去除晶圆表面的颗粒、有机物和其他污染物的过程,以确保器件性能和良率。 本段落探讨了半导体IC制造过程中存在的各种污染物类型及其对制程的影响,并介绍了去除这些污染物的各种方法。同时,文章还分析比较了湿法清洗与干法清洗的特点及各自的清洁效果。
  • 安川搬运人SEMISTAR-MR124.pdf
    优质
    《安川半导体晶圆搬运机器人SEMISTAR-MR124》介绍了专为半导体制造设计的高效搬运设备,适用于高精度、自动化生产环境。 安川半导体晶片搬运机器人SEMISTAR-MR124 1. 搬运处理能力提升50% - 最佳机器人手臂设计:采用轻量化、低惯性的设计方案。 - 速度合成功能:优化单独动作和合成动作的速度性能,使之达到最优状态。 - 最短轨迹生成功能:实现从起始位置到结束位置的最短路径规划。 2. 搬运精度提升50% 3. 动作区域扩大30% 单台基本机器人即可覆盖更广泛的作业范围,具备高度适应性。
  • :
    优质
    机器视觉是一种通过计算机模拟人类视觉系统的技术,广泛应用于工业检测、自动化控制及医疗等领域,实现高效精准的数据采集与分析。 机器视觉是一种结合了图像处理、计算机视觉及光学技术的综合应用领域,旨在模拟人类视觉功能进行自动化检测、识别、分析与理解。它在多个行业均有广泛应用,包括但不限于医疗设备、金属制造、纸制品加工、制药业和塑料工业等。 特别是在质量控制环节中,机器视觉系统能够执行多种检验任务:如外观检查、尺寸测量、缺陷探测及污染物检测,并能验证产品的完整度。例如,在汽车制造业里,该技术可以确保零部件的正确装配,精确评估焊接的质量并校准车辆上的VIN标识以保障合规性与可追踪性。此外,它还能读取和确认条形码或数据矩阵编码等标签信息,从而避免生产中的错误降低成本。 机器视觉同样在自动化领域发挥着重要作用,比如用于机器人引导及定位操作中提供精确的X、Y轴坐标以及旋转角度Θ的信息指导机械臂准确移动零件以提高效率与精度。例如,在装配线作业时,系统可帮助检测点焊质量确保焊接数量和位置无误;同时也能保证冲压件正确对齐或在喷漆工序中实现颜色及形状匹配优化车身组装流程。 测量是机器视觉的另一项核心功能:它能准确地测定物体的关键尺寸(如大小、距离、方位角)并将这些数据与预设标准进行比对,从而确保产品的一致性和高质量。这种非接触式的精确度量方式克服了传统手工测量方法中的主观偏差和误差。 此外,光学字符识别(OCR)及光学字符验证(OCV)技术使得机器视觉系统能够辨识并确认文本字符串(如组件追溯信息)的准确性与合规性以提高生产效率。 通过提供高效且精准的自动化检测手段,机器视觉帮助制造企业实现高质量产品的产出、减少废品率进而提升利润空间同时降低对人工检查环节的需求。随着技术的进步,分布式视觉网络和PLC通信系统的集成进一步增强了其在现代工业自动化的价值与应用范围。
  • 实战之计算
    优质
    本课程聚焦于计算机视觉领域的物体检测技术,通过实践项目深入讲解其原理与应用,助力学员掌握前沿技术。 物体检测实战课程旨在帮助学生快速掌握当前计算机视觉领域主流的检测算法及其实际应用案例。所有讲解的算法均来自企业项目中的常用架构,并通过通俗易懂的方式解释其原理,结合相关论文进行实例分析。在实践部分,我们将详细解读源码中各个核心模块的具体实现方法,带领大家从代码层面全面掌握算法实现流程、配置及应用技巧,并提供所需的数据集和完整代码。
  • 锯片算法与.pptx
    优质
    本PPT探讨了在锯片生产过程中运用机器视觉技术进行质量控制的方法和实践。通过先进的图像处理和模式识别技术,实现对锯片表面缺陷、尺寸精度等关键参数的自动检测与评估,从而提高产品质量及生产效率。 机器视觉算法与应用--锯片检测.pptx 该文档主要介绍了如何利用机器视觉技术进行锯片的自动化检测。通过使用先进的图像处理技术和模式识别方法,可以实现对锯片的质量控制、尺寸测量以及缺陷定位等功能。具体内容包括但不限于: - 机器视觉的基本原理和关键技术 - 锯片检测的具体应用场景及需求分析 - 常用算法介绍及其在实际项目中的应用案例 - 系统设计与实施过程的详细介绍 文档旨在为从事相关领域研究和技术开发的专业人士提供参考,帮助他们更好地理解和掌握基于机器视觉技术实现锯片自动化检测的方法和技巧。
  • 计算论文
    优质
    该论文深入探讨了计算机视觉领域中的关键问题和技术进展,包括图像处理、模式识别及深度学习算法在视觉理解上的应用。文章综述了近年来的研究成果,并展望未来发展方向。 近几年计算机视觉领域的发展可以概括为几个主要方面:首先介绍了基本的特征提取方法,随后重点讨论了深度神经网络的应用及其影响。接下来是基于梯度直方图(HOG)的特征提取与匹配技术,这些技术在目标实例检测和图像检索等任务中扮演着基础性角色。此外,我们还探讨了利用滑动窗口进行目标检测的方法,在人脸及行人识别等领域具有广泛应用。 文章继续讨论了一些核心的图像处理技术和形状识别方法,并概述了几种基本的跟踪策略——包括基于区域与运动的目标追踪方式。最后,对视频监控、车载视觉系统以及遥感技术的应用进行了总结和分析。这些研究内容在Matlab中得到了实现并提供了相应的代码片段供读者参考;同时也有部分Python语言的示例代码可供学习使用。 尽管没有特定的前提条件要求,但掌握线性代数、信号处理及模式识别的基础知识将有助于更好地理解文中涉及的概念和技术细节。
  • 关于在停车位研究
    优质
    本研究探讨了机器视觉技术在智能停车系统中的应用,旨在提高车位检测精度与效率,减少资源浪费,并为驾驶者提供便利。通过图像处理和模式识别算法优化现有停车解决方案。 一种基于视频的停车场车位监控算法允许用户通过鼠标操作来标定车位位置。该算法采用三种判据:第一种是差影均方值,用于检测车位占用状态的变化;第二种是差影方差,第三种则是前景与背景比值的方差。这两种额外的判据有助于排除干扰并确认车位的状态变化。当这三项指标数值稳定时,系统会更新车位背景信息。实验结果表明此算法能够迅速且准确地反映停车位的变化,并易于实现。
  • 车道线在计算
    优质
    车道线检测是计算机视觉领域的一项关键技术,广泛应用于自动驾驶和辅助驾驶系统中,通过图像处理与机器学习算法识别道路边界,保障行车安全。 该资源包含:Python代码、原视频以及车道线检测处理后的视频。请注意,本代码中的透视矩阵为手动标定,并且滑动窗口的设定使用了自定义数值,在一定程度上具有局限性,仅适用于当前视频;若更换其他视频,则需要相应调整代码参数。 算法步骤如下: 1. 透视变换; 2. 提取车道线; 3. 矩形滑窗; 4. 跟踪车道线; 5. 逆透视变换还原。 代码中添加了详细的注释,欢迎大家积极点赞和评论,博主会定期回复。