Advertisement

基于AD7793的温度测量系统电路设计及PCB源文件-电路方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目介绍了一种基于AD7793高精度模数转换器的温度测量系统电路设计方案,并提供完整的PCB源文件,适用于精密测温应用。 该项目是一个未能按时完成的高精度温度测量系统设计。整个项目包括PCB板和硬件电路已经全部完成。该高精度温度测量电路使用的重要芯片包括MSP430F4152、AD7793、EDS820、PTR6000M等,并附有相关的温度测量电路及PCB截图。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • AD7793PCB-
    优质
    本项目介绍了一种基于AD7793高精度模数转换器的温度测量系统电路设计方案,并提供完整的PCB源文件,适用于精密测温应用。 该项目是一个未能按时完成的高精度温度测量系统设计。整个项目包括PCB板和硬件电路已经全部完成。该高精度温度测量电路使用的重要芯片包括MSP430F4152、AD7793、EDS820、PTR6000M等,并附有相关的温度测量电路及PCB截图。
  • GL850GUSB集线器PCB-
    优质
    本项目提供了一种基于GL850G芯片设计的USB集线器电路方案及其PCB源文件。该方案详细介绍了硬件设计、原理图和布局,适用于电子工程师进行产品开发与学习研究。 最近公司电脑的一个USB接口坏了,只剩下一个好用的接口了。于是决定做一个USB hub,并参考了一个genesys的方案进行设计。经过测试后效果不错。附件中分享的是基于GL850G的USB HUB原理图和PCB源文件,其中原理图为orcad文件格式,pcb文件为pads2007格式。同时附上了我收集到的一些他人设计的USB HUB电路图以及官网提供的设计方案,请参见附件内容。
  • AD590传感器
    优质
    本设计提出一种利用AD590温度传感器构建的精准测温电路方案。通过优化信号处理与数据采集技术,实现高精度和稳定性温度监测,适用于工业、科研等领域。 基于AD590传感器的温度测量系统电路设计涉及利用AD590这一高精度、线性响应良好的热敏电阻来构建一个能够准确检测环境或设备内部温度变化的电子系统。该设计方案通常包括信号调理部分,用于将微弱电流转换为电压以便后续处理;数据采集模块,则负责接收并数字化传感器输出的数据;以及显示与控制单元,使用户可以直观地查看测量结果,并根据需要调整设置参数以优化性能表现。 整个系统的构建需遵循一定的电气工程原理和最佳实践指导原则。设计时应考虑AD590的工作特性(例如其灵敏度、温度系数等),并据此选择合适的外部元器件来实现稳定可靠的电路连接与操作环境。同时,为了保证测量精度及整体效率,在软件层面也需要进行适当的算法优化以确保数据处理的准确性和实时性。 这样的系统在工业自动化控制、医疗设备监测以及家用电器等领域都有着广泛的应用前景和市场需求。
  • STM32MLX90614显示码-
    优质
    本项目介绍了一种使用STM32微控制器与MLX90614红外测温传感器相结合的设计,用于实现非接触式体温测量,并提供详细电路图和源代码。 本项目基于STM32F103C8T6微控制器,并集成了OLED和MLX90614的驱动程序。提供完整的工程包,可以直接烧录使用。代码编写规范且具有高可移植性。
  • 热敏PCB
    优质
    本项目设计并实现了一款基于热敏电阻的温度测量电路板(PCB),用于精确监测环境温度变化。通过优化电路布局和材料选择,提高了系统的稳定性和灵敏度,适用于家庭、工业等多种场景下的温控需求。 热敏电阻测温电路的PCB图已经画好,可以直接使用。
  • TMS320VC5416最小PCB-
    优质
    本项目提供TMS320VC5416 DSP芯片的最小系统硬件电路设计方案及其PCB图文件,适用于快速开发DSP应用,包含详细的电路原理和布局指导。 TMS320VC5416最小系统硬件电路包括了芯片的基本工作所需的各个组成部分的设计与连接方式。这些部分通常包含电源模块、复位电路、晶振以及存储器接口等,确保了DSP能够在最简化的条件下稳定运行,并支持进一步的功能扩展和应用开发。
  • STM32F103C8T6湿
    优质
    本设计采用STM32F103C8T6微控制器为核心,结合温湿度传感器,构建了一个高效、精确的温湿度监测系统。 随着现代工农业技术的发展以及人们对生活环境要求的提高,准确检测与控制温湿度变得越来越重要。温湿度是工业生产和农业生产中的关键环境参数,在实际操作中占据着重要的位置。例如,如果温度高且湿度过大,则可能导致粮食发芽和腐败,并可能增加二氧化碳浓度;在密闭环境中甚至有可能导致工人窒息。此外,发芽的粮食还会进一步提高环境温度,从而增加了火灾等安全事故的风险。 因此,适时准确地进行温湿度测量具有重要意义,在工业生产中有着广泛的应用需求。传统的实现方式通常需要通过电缆连接监控台与现场设备,并且传统传感器需借助复杂的电路来将模拟信号转换为数字信号;而长距离的数据传输会带来损耗和误差问题。 本系统采用无线方案,不需要铺设电缆,从而节约成本并提高工作效率及数据采集的便捷性。该系统主要使用STM32F103C8T6作为主控芯片,并利用DHT11传感器进行温湿度检测;随后将获取的数据发送给单片机处理后通过NRF24L01无线模块传输出去,其中单片机与无线模块之间的通信采用SPI协议。接收端同样使用STM32F103C8T6作为主控芯片,并配以NRF24L01无线接收器和液晶屏(如诺基亚5110)进行数据展示;经过一定距离的传输,接收到的数据会被传送到单片机中处理并显示在屏幕上。这样就完成了一次温湿度信息从采集到发送再到接收与展现的过程。
  • 单片机和DS18B20-
    优质
    本设计提出了一种以单片机为核心,结合DS18B20温度传感器的温度测量系统。该方案具有高精度、低成本及易于操作的特点,适用于多种环境下的温度监测需求。 DS18B20 单线数字温度传感器(一线器件)具备独特的优点:首先,它采用单总线接口方式与微处理器连接,仅需一条信号线即可实现双向通讯。这种设计具有经济性好、抗干扰能力强的特点,并且适合在恶劣环境中进行现场温度测量。此外,使用方便使得用户可以轻松搭建传感器网络,为测温系统的设计带来新的理念。 其次,DS18B20 的测量范围广泛(-55℃至+125℃),并且精度高,在 -10°C 至 +85°C 区间内的误差不超过 ± 0.5°C。此外,它在使用过程中不需要额外的外围元件,并支持多点组网功能,即多个 DS18B20 可以并联在同一根线上实现温度测量。 供电方式灵活是其另一大优势:DS18B20 能够通过内部寄生电路从数据线获取电源。因此,在满足特定时序要求的情况下,无需外部电源即可运行,简化了系统结构,并提高了可靠性。 此外,用户可以根据需求设置 DS18B20 的测量分辨率(9至12位),以适应不同的应用场景。当电源极性接反时,虽然温度计不会因发热而损坏但无法正常工作;内置的 EEPROM 能够在掉电后保存设定值如分辨率和报警温度。 DS18B20 体积小巧、适用电压范围广且经济实惠,支持更小封装方式及宽泛的工作条件。因此它被设计者们广泛应用于构建低成本测温系统中。基于单片机和 DS18B20 设计的电路方案能够实现可调温度测量,并保留两位小数精度。
  • STM32最小原理图PCB-
    优质
    本项目提供STM32最小系统的电路原理图和PCB设计源文件。适用于初学者快速搭建开发平台,进行嵌入式编程学习与实践。 我分享一个自己设计的STM32最小系统板,主芯片采用的是STM32F103RBT6。该电路包括一个提供稳定3.3V电压的稳压模块,并且具备BOOT切换功能以及用于串口下载线路的设计,所有IO引脚均被引出。 这个设计是为团队比赛测试而制作的,在实际打板验证过程中未发现任何BUG,可以正常使用。现分享给有需要的朋友参考使用。附上STM32最小系统电路原理图和PCB截图供查看学习之用。 请注意:此设计方案来源于网络网友分享,仅供大家参考学习用途,请勿用于商业目的。
  • STM32资料
    优质
    本资料提供了一种基于STM32微控制器的温度检测电路设计方法,包括硬件选型、电路连接及软件编程技巧,适用于嵌入式系统开发人员参考。 STM32是一款基于ARM Cortex-M内核的微控制器,由意法半导体(STMicroelectronics)制造,并广泛应用于各种嵌入式系统。在本项目中,我们利用STM32设计了一个温度检测电路,这种功能常见于物联网或自动化系统中,用于监控环境或设备的温度。 该方案的核心是使用STM32来读取和处理来自数字温度传感器的数据。通常会连接DS18B20或TMP36等类型的传感器。这些传感器能够将环境温度转换为便于STM32直接读取的信号形式:例如,DS18B20支持单线通信协议(仅需一根数据线),而TMP36则通过模拟输入引脚输出与温度成比例的电压。 提供的文件包括“STM32温度检测PCB.PcbDoc”,它包含了整个电路板设计细节,如元器件位置、走线布局和电源分配;以及“STM32温度检测原理图.SchDoc”展示了所有组件及其连接关系。此外,“程序.zip”文件中包含实现温度监测功能的固件代码。 项目中的其他重要组成部分可能包括一个显示接口(例如LCD或LED)和其他支持电路,如晶振、复位电路和电源稳压器等。“lnMhD6iTI2byrEAs3g1kqR4OTuVK.png”到“lm4ITACgZrsmo8HN39ASy2rbeduW.png”的图片可能展示了设计的不同视角或细节,而“FolDb4AK_Y9IYPozZiyEtUB9z8NT.png”则可能是电路板的三维渲染图。 通过分析这些文件和实现代码(如初始化设置、传感器驱动程序及数据处理算法),开发者可以了解如何利用STM32构建一个实用且高效的温度监测系统,涵盖单片机编程、电子电路设计以及温度传感应用等多个技术领域。