Advertisement

基于跳扩散模型的欧式期权定价MATLAB源程序

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本MATLAB源程序运用跳扩散模型进行欧式期权定价,结合随机波动率与跳跃过程,提供金融工程领域研究和应用的有效工具。 这段代码是用于计算欧式期权价格的主程序,并且可以生成不同股票价格及利率情况下的欧式看涨期权图形。对于不同的参数设置(如跳跃幅度),该程序能够绘制相应的图表。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MATLAB
    优质
    本MATLAB源程序运用跳扩散模型进行欧式期权定价,结合随机波动率与跳跃过程,提供金融工程领域研究和应用的有效工具。 这段代码是用于计算欧式期权价格的主程序,并且可以生成不同股票价格及利率情况下的欧式看涨期权图形。对于不同的参数设置(如跳跃幅度),该程序能够绘制相应的图表。
  • Matlab看涨代码-...
    优质
    本资源提供了一套基于MATLAB编写的美式看涨期权跳扩散模型代码,适用于金融工程中欧美期权定价问题的研究与教学。 近年来,人们开发了许多替代模型来扩展Black-Scholes期权定价框架,以便更好地反映实际市场特征。在传统的Black-Scholes模型中,资产回报被假设为遵循布朗运动和正态分布。然而,实证研究揭示了两个关键问题:(i) 资产收益的分布具有比正态分布更高的峰度以及不对称且更重尾部的特点;(ii) 在期权市场中观察到一种称为“波动率微笑”的现象。 为了应对这些问题,一些模型被提出作为解决方案,其中包括Kou(2002)提出的跳跃扩散模型。该模型假定标的资产的价格可以根据布朗运动和双指数分布的跳变而变动。本论文旨在基于此框架开发美式期权的解析定价公式,并以此来有效确定其价格以及相关的对冲参数。 此外,本段落还包含了一个Matlab代码实现,用于模拟Kou跳跃扩散模型中的美国期权定价问题。通过该代码可以更好地理解及验证理论分析结果的有效性与实用性。
  • 跃-
    优质
    本研究探讨了包含跳跃过程的扩散模型在期权定价中的应用,分析了该模型对金融衍生品估值的影响,并通过实证研究验证其有效性。 在金融数学领域内,期权定价理论一直是重要的研究主题之一,尤其自20世纪70年代以来随着期权交易的兴起而催生了大量相关研究。传统的Black-Scholes模型是最早期的一种期权定价工具,它假设标的资产价格遵循几何布朗运动,并且预期收益率和波动率都是常数。然而,在实际应用中这一模型存在一定的局限性,例如无法准确解释市场中的某些现象(如隐含波动率微笑)。因此,研究人员开始寻找新的理论框架来更精确地反映市场价格的实际情况,跳跃-扩散模型便是其中之一。 跳跃-扩散模型认为股票价格不仅遵循连续的布朗运动(即扩散过程),还会经历不连续的价格跳变。这种模型能够更好地捕捉到市场中突然出现的大规模波动,并且在拟合实际市场的价格分布方面表现得更为出色。 张瑜、李凡和严定琪在其论文《跳跃-扩散模型下的期权定价》中,深入探讨了在这种环境下进行期权估值的方法论框架。他们假设金融市场中有两种资产:一种是无风险的(如国债),另一种是有风险的(如股票)。在设定无风险利率恒定且有风险资产价格遵循跳跃-扩散过程的基础上,他们研究了如何计算不同类型的期权价值。 张瑜等人的工作首先假定了股票价格服从一般的跳跃-扩散动态,并给出了相应的定价公式。随后,他们进一步考虑了一个更复杂的模型——非齐次Poisson跳跃-扩散框架,在这个情形下无风险利率是时间的函数。通过运用随机微分方程技术结合期权在有效期内没有现金分红支付的情况,研究者们推导出了具体的解,并提出了几种新的定价公式。 在这个过程中,随机微分方程起到了关键的作用;它不仅能够描述价格的变化趋势(包括连续变动和离散跳变),还能模拟这些变化的动态特性。非齐次Poisson过程则允许跳跃发生的频率随时间改变,从而更贴近现实市场的复杂性。 论文的核心关注点在于随机微分方程、Poisson跳跃-扩散模型以及期权定价理论的应用与创新。这类研究成果对于金融市场参与者来说非常重要,因为它可以帮助投资者更好地理解并利用金融衍生品的价值评估方法进行决策。 张瑜和李凡均任职于兰州大学数学与统计学院,并专注于金融工程领域的研究;严定琪则是该院校的副教授,同样致力于这一专业方向的工作。通过这篇论文的研究成果可以看出学者们是如何将抽象的数学理论应用于解决实际金融市场问题中的定价难题上,这不仅推进了学术界的理解深度也促进了相关产品设计和服务创新的发展。 总之,这些理论和模型的进步与发展对于提高金融市场的运作效率以及推动新类型的金融产品的开发具有重要意义。
  • MATLAB(B-S)实现
    优质
    本项目运用MATLAB编程语言实现了基于Black-Scholes模型的欧式期权定价算法。通过模拟金融市场的波动率与利率变化,为投资者提供精准的风险评估工具。 MATLAB实现欧氏期权定价(B-S模型)程序说明:本程序经过严格测试, 放心下载使用.代码介绍:欧式看涨期权和看跌期权是金融衍生品的一种,它们的价格可以通过Black-Scholes模型(简称B-S模型)来计算。B-S模型是一个关于欧式股票看涨/看跌期权的定价模型,基于一系列假定条件,如金融资产收益率服从对数正态分布、在期权有效期内无风险利率和金融资产收益变量恒定、市场无摩擦(即不存在税收和交易成本)以及该期权是欧式期权(在期权到期前不可实施)。
  • 应用-MATLAB开发
    优质
    本文利用MATLAB进行编程实现,在跳跃扩散过程中分析并计算闭式期权的价格,为金融工程领域提供有效工具和方法。 跳跃扩散过程的闭式期权定价器
  • 默顿双障碍数值分析方法
    优质
    本研究运用默顿跳跃扩散模型探讨离散时间下的双障碍期权定价问题,提出了一种有效的数值分析方法,为金融衍生品定价提供了新的视角和工具。 障碍期权作为一种弱路径相关的奇异期权,在金融衍生品领域具有重要意义。由于离散观测值的定价公式需要计算高维积分,导致数值求解非常耗时。现有的研究大多数仅限于理论推导或模拟实验,并且许多计算假设标的资产遵循布莱克-舒尔斯模型。本段落采用了默顿跳跃扩散模型作为基础框架,成功地推出了离散双障碍期权的价格表达式。 在该文中,我们使用了数值方法通过高精度近似连续卷积来解决离散卷积的问题。同时,我们将理论推导的结果与蒙特卡罗模拟法得到的仿真结果进行了对比分析以验证其有效性和准确性,并间接证明计算方法正确性的依据是将退化常数参数模型下的结论与其他模型进行比较。 实验结果显示,数值求解的方法相比于传统的蒙特卡洛模拟具有更好的稳定性。即使假设后者的结果为真,在达到相同精度的情况下,前者所花费的时间要远少于后者的耗时。
  • 二叉树MATLAB代码
    优质
    本项目提供了一种利用MATLAB实现欧式期权价格计算的方法,基于二叉树模型。通过简洁高效的代码,用户可以方便地模拟和分析金融衍生品的价格波动。 欧氏期权二叉树定价的MATLAB代码可以根据资产当前价格、期权敲定价格、年化无风险利率以及到期时间等参数来计算欧氏期权的价格。
  • MATLAB lsqnonlin代码-用洲看涨指数...
    优质
    本段代码利用MATLAB中的lsqnonlin函数优化参数,基于指数模型为欧洲式看涨期权定价。适用于金融建模与分析。 我们研究了无限活动(IA)指数Lévy模型类别中的两个模型——方差-伽玛(VG)模型和CGMY模型,旨在分析它们的简单性如何与更复杂的Heston随机波动率(SV)及Bates随机波动率跳跃扩散(SVJ) 模型竞争。我们提供了详尽的理论介绍,并在行使价和到期日之间对每种模型进行了校准。 研究结论主要体现在两个方面:首先,由于浮动微笑特性以及偏斜和峰度的变化,所分析的指数Lévy模型难以在整个期限内进行准确校准,从而导致长期OTM选择权被低估。对于短期期权而言,这些模型过度补偿了偏斜效应,因此会导致短期内期价过高。 其次,在捕捉市场动态方面,由于增加了复杂性和合并了资产收益率的风格属性(如利率和股息),Heston及Bates模型表现更佳。在R中完成了对利率和股息收益的恢复工作。从期权链中恢复这些变量的基本方法是:选择所有到期日的ATM呼叫次数,并使用看涨期权平价计算出相应的看跌期权价格,进而确定合适的利率r和股息收益率q以使市场上的实际看跌价格与通过理论模型推算的价格相匹配。
  • Matlab看跌与看涨二叉树
    优质
    本简介介绍了一个使用Matlab编写的金融工程工具——用于计算看跌和看涨期权价格的二叉树模型程序。此程序能够帮助投资者理解并预测不同市场条件下的期权价值变化,是学习与应用量化投资策略的重要资源。 假设标的资产为不付分红的股票,其当前市场价格为50元,波动率为每年40%,无风险连续复利年利率为10%。该股票的5个月期美式看跌期权执行价格(Strike)为50元,求此期权的价值。
  • 蒙特卡洛看涨:Monte Carlo 方法
    优质
    本文采用蒙特卡洛模拟方法构建了欧洲式看涨期权的基本定价模型,通过随机抽样和统计分析来估算期权价值。 这是一个基本的蒙特卡洛欧洲期权定价模型,使用C#语言编写,并配备了Windows窗体界面(WinForms)。该应用程序主要由三部分组成:模拟器、查看以及演示者。 1. 模拟器是为整个应用设计的核心模型,在后续内容中会详细描述。 2. 查看指的是应用的用户图形接口。这是基于Form类派生的一种形式,负责管理基本输入验证,并展示图表给使用者。 3. 演示者作为模拟器和视图之间的桥梁,主要功能包括将视图中的事件绑定到Simulator的方法上以及在模拟完成后生成两个图表的数据序列。 Simulator类位于MonteCarlo.Model命名空间中。该类的主要任务是创建所需数量的SimulatedPrice路径实例,并采用并行方式运行以生成现货价格曲线。SimulatedPrice类包含多个静态变量,这些变量反映了模型初始状态的各项参数——如现货价格和行使价、mu和sigma值以及用于离散化方案类型的类型选择等。