Advertisement

使用Keras构建的图卷积网络。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
这段代码是基于Keras构建的图卷积神经网络实现,它能够有效地帮助读者深入理解图卷积网络的运作机制。同时,结合原版论文阅读,将会更加清晰地把握其中的研究思路和成果。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Keras-GCN:基于Keras实现
    优质
    Keras-GCN 是一个利用 Keras 框架构建的图卷积神经网络库。它提供了一种简便的方法来处理和学习图结构数据,适用于复杂网络分析与模式识别任务。 使用Keras对图进行深度学习基于Keras的图卷积网络的半监督分类实现。由Thomas N.Kipf 和 Max Welling 在ICLR 2017 上提出。 有关高级解释,请查看我们的博客文章: Thomas Kipf(2016) 注意,此代码无意于从论文中复制实验,因为初始化方案、退出方案和数据集拆分与TensorFlow中的原始实现不同。 安装方法为python setup.py install。依赖关系包括keras版本1.0.9或更高以及 TensorFlow 或 Theano。 使用说明:运行命令 python train.py 资料集参考(Cora) 引用格式: 如果您在自己的工作中使用以下代码,请参照我们的论文: @inproceedings{kipf2017semi, title={Semi-Supervised Classification with Graph Convolutional Networks}, author={Thomas N. Kipf and Max Welling} }
  • 基于Keras版本
    优质
    本项目为使用Python深度学习库Keras实现的图卷积神经网络版本,旨在简化图数据处理与分析过程,助力于各类图形结构信息的应用研究。 这是Keras版本的GCN代码,有助于理解图卷积网络。配合原版论文阅读会更佳。
  • 使PyTorch神经LeNet-5.ipynb
    优质
    本Jupyter Notebook教程详细介绍了如何利用Python深度学习库PyTorch实现经典的卷积神经网络模型LeNet-5,适用于计算机视觉任务。 利用PyTorch可以实现卷积神经网络LeNet-5。关于如何使用PyTorch实现这个模型的具体细节,可以参考相关的技术博客文章。文中详细介绍了构建和训练该模型的过程,并提供了代码示例以帮助理解每个步骤的执行方式。通过这些资源,开发者能够更好地掌握利用深度学习框架进行图像分类任务的方法和技术。
  • Keras TCN:基于Keras时间
    优质
    Keras TCN是基于Keras框架实现的时间卷积网络库,专为处理序列数据设计,适用于语音识别、自然语言处理等多种时序任务。 Keras TCN与所有主要/最新的Tensorflow版本(从1.14到2.4.0+)兼容。安装命令为:pip install keras-tcn。 为什么选择时间卷积网络?相较于具有相同容量的循环体系结构,TCN拥有更长的记忆能力。在各种任务上,如序列MNIST、加法问题、复制内存及字级PTB等,其性能始终优于LSTM/GRU架构。此外,它还具备并行处理的能力、灵活的接收场大小以及稳定的梯度,并且所需的训练内存较低,可以接受不同长度的输入。 TCN的核心是放大因果卷积层堆栈(Wavenet, 2016)可视化。通常的方法是在Keras模型中导入TCN层来使用它。以下是一个回归任务的例子: ```python from tensorflow.keras.layers import Dense from tensorflow.keras import Input, Model from tcn import TCN, tcn_full_summary batch_size, timesteps, input_dim = None # 定义变量值 ``` 此代码片段展示了如何在Keras模型中使用TCN层。对于更多示例,请参阅相关文档或源码中的其他任务案例。
  • 使手动与torch.nn方法神经、空洞及残差神经
    优质
    本项目深入探讨了利用PyTorch框架实现卷积神经网络(CNN)、空洞卷积(Dilated Convolution)和残差神经网络(ResNet),结合手动编码与预定义模块,以优化图像识别任务的性能。 1. 二维卷积实验 手写实现二维卷积,并在至少一个数据集上进行实验。从训练时间、预测精度以及损失函数的变化等多个角度分析实验结果(建议使用图表形式展示)。同时,利用`torch.nn`库来实现二维卷积,在相同的数据集上执行同样的实验并进行全面的对比分析。 还需对不同超参数的影响进行研究和比较,比如卷积层数量、卷积核大小、批量大小以及学习率等。至少选择其中一到两个方面深入探讨。 2. 空洞卷积实验 使用`torch.nn`库实现空洞卷积,并保证膨胀因子(dilation)满足HDC条件如1, 2, 5,并堆叠多层进行训练,同样在至少一个数据集上执行实验。从多个角度分析其效果:包括但不限于训练时间、预测精度和损失函数的变化。 将所得到的空洞卷积模型与普通二维卷积网络的结果进行对比研究,在上述提到的角度下展开详细的比较分析。 此外,还需对不同超参数的影响做进一步的研究,比如层数量、核大小以及膨胀因子的选择等。至少选择其中一到两个方面深入探讨(选作)。 3. 残差网络实验 根据给定的结构实现残差网络,并在至少一个数据集上进行训练和测试。从多个角度分析其性能:包括但不限于训练时间、预测精度及损失函数的变化。
  • 使Keras线性回归神经
    优质
    本教程介绍如何运用Python深度学习库Keras搭建实现线性回归功能的简单神经网络模型,适合初学者入门。 文章目录 1. 前言 2. 用Keras搭建线性回归神经网络 2.1 导入必要模块 2.2 创建数据 2.3 搭建模型 2.4 激活模型 2.5 训练+测试 1. 前言 神经网络可以用来解决回归问题,例如给定一组数据,用一条线来拟合这些数据,并预测新输入的输出值。 2. 用Keras搭建线性回归神经网络 2.1 导入必要模块 ```python import numpy as np from keras.models import Sequential from keras.layers import Dense import matplotlib.pyplot as plt ``` 2.2 创建数据
  • GCN:使TensorFlow实现
    优质
    本项目基于TensorFlow框架实现了图卷积神经网络(GCN),适用于节点分类、链接预测等任务。代码开源,易于扩展和应用。 图卷积网络是使用TensorFlow实现的,用于处理图结构数据中的节点分类问题(包括半监督学习任务)。这个项目基于Thomas N.Kipf与Max Welling在ICLR 2017上发表的文章,并且可以在我们的博客文章中找到更详细的解释。要安装,请运行`python setup.py install`命令。 **要求:** - 张量流版本需大于0.12 该网络的使用演示可以通过以下步骤执行: ```bash cd gcn python train.py ``` 对于自定义数据集,你需要提供三个矩阵来表示图结构和节点信息: - N×N大小的邻接矩阵(其中N代表节点的数量) - N×D大小的特征矩阵(这里D是每个节点所拥有的特征数量) - 一个N by E大小的二进制标签矩阵(E为类别数) 在`utils.py`中的load_data()函数提供了如何使用这些数据的具体示例。在此演示中,我们加载了引文网络的数据集(包括Cora、Citeseer或Pubmed)。原始数据可以从相关的文献和存储库获取。 请参考相关文档以了解更多信息并开始您的实验。
  • 使Keras框架调整像分割UNET神经(基于Python)
    优质
    本项目采用Python编程语言和Keras深度学习库,通过微调UNet模型实现高效的图像分割任务。 在Keras框架中对用于图像分割的卷积神经网络“UNET”进行修改。
  • 神经使Python从零神经、LSTM及常规神经
    优质
    本书详细介绍如何利用Python编程语言从头开始搭建卷积神经网络(CNN)、长短时记忆网络(LSTM)和传统人工神经网络,适合对深度学习感兴趣的读者。 神经网络:用Python语言从零开始实现的卷积神经网络、LSTM神经网络和其他类型的神经网络。
  • 基于Keras框架神经(CNN)
    优质
    本项目采用Keras深度学习框架构建并训练了卷积神经网络模型,应用于图像分类任务中,展示了CNN在特征提取和模式识别方面的强大能力。 本段落以MNIST手写数字分类为例,讲解使用一维卷积和二维卷积实现CNN模型。实验中主要用到Conv1D层、Conv2D层、MaxPooling1D层和MaxPooling2D层。这些层的具体参数如下: (1)Conv1D - filters:卷积核个数(通道数) - kernel_size:卷积核尺寸(长度或宽度)