Advertisement

无线充电接收端凌通方案电路图

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本方案提供了一种高效的无线充电接收端设计电路图,采用凌通技术优化了能量传输效率和稳定性。适用于各种电子设备快速便捷地进行无线充电。 无线充电接收端凌通方案原理图已通过Qi认证。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 线
    优质
    本方案提供了一种高效的无线充电接收端设计电路图,采用凌通技术优化了能量传输效率和稳定性。适用于各种电子设备快速便捷地进行无线充电。 无线充电接收端凌通方案原理图已通过Qi认证。
  • 【NXP】15W线器(含原理和设计说明)-
    优质
    本资源提供NXP公司15W无线充电接收器的设计文档,包含详细原理图及设计说明,适用于工程师学习与参考。 这款15W无线充电接收器参考设计采用了飞思卡尔MWPR1516接收控制器IC,并支持所有必要的功能来管理和执行无线充电接收解决方案。该设计符合最新的中等功率工作组(MPWG)规范,能够兼容任何Qi认证的发射设备进行充电操作。 此演示板提供5V输出和3A电流,同时可以设置为其他电压输出(最高18V),用户只需要选择合适的外部降压芯片就可以支持双电池或三电池系统。设计中包括了BUCK架构以确保在不同应用需求下的灵活性,并且具备专门的FSK与CNC模型来简化MPWG双向通信开发过程。 该参考解决方案还配备了飞思卡尔嵌入式无线充电软件库,为客户提供更高的设计自由度和产品独特性。同时提供了一个友好的FreeMASTER用户界面促进用户体验交互。此外,它保留了接收器与主应用处理器(AP)的I2C和UART接口能力,并且根据WPC合规测试程序进行了预验证以确保符合标准。 该系统具备12位ADC和PGA,可以进行小型系统的功率损失检测并实现FOD功能;USB/适配器开关则允许有线充电作为优先选择来节省能源。这些特性共同提供了一个高度集成且灵活的平台,帮助客户加速开发过程,并缩短产品上市时间。
  • 线器原理
    优质
    本页提供了详细的无线充电接收器电路设计与工作原理说明,包含关键元件和电气符号的示意图,帮助理解无线电力传输机制。 随着无线充电技术的普及与应用,现将无线充接收器原理图分享给大家参考!
  • 线磁波设计
    优质
    本设计图提供了一种创新的无线充电解决方案,通过优化电磁波传输路径和效率,实现高效、安全的能量传递。适用于各种电子设备。 下面介绍一种利用室外天线接收本地强功率电台信号给电池充电的电路设计。将该电路与可充电池安装在电子石英挂钟上,可以实现长期无需更换电池的效果。如果采用贴片元件进行微型化处理,并进一步优化电路设计,则可以把这套装置应用于电视或其他遥控器中,从而制造出一种不需要换电池的新型遥控器。对于商家而言,这将带来无限商机。
  • 智能穿戴设备线详解
    优质
    本文详细解析了智能穿戴设备的无线充电技术与应用,通过图文并茂的形式介绍了最新无线充电接收方案,帮助读者轻松掌握相关知识。 本段落主要介绍了智能穿戴设备无线充电接收的解决方法,希望对你有所帮助。
  • 5W 线设计与
    优质
    本项目专注于5W无线充电电路的设计与优化,涵盖发射端和接收端的核心技术、效率提升及兼容性问题,旨在提供高效稳定的无线充电解决方案。 5W无线充电技术是一种现代便捷的设备充电方式,它基于电磁感应原理,在发送端与接收端之间通过空气传递电力而无需物理接触。这种技术尤其适用于智能手机、智能手表和其他小型电子设备,极大地提高了用户的生活便利性。 在无线充电领域中,高通Quick Charge(QC)2.0协议是一个重要的标准,旨在快速且安全地为支持该协议的设备提供电源。5W无线充电电路与高通QC2.0协议相结合后,可以实现比常规无线充电器更快的充电速度,并保持良好的兼容性和效率。 在设计这种类型的无线充电系统时,通常会包含以下几个关键部分: 1. **发送端(Transmitter)**:这是指无线充电器的部分,包括电源适配器、控制器芯片、线圈和功率转换电路。控制器芯片负责管理电力供应并确保遵循高通QC2.0的规范,并将交流电转化为适合于无线传输的高频交流电。 2. **接收端(Receiver)**:这部分通常内置在需要充电的设备中,包含一个接收线圈以及相应的电路来捕获由发送端发出的电磁场能量,并将其转换为直流电以给电池充电。 3. **功率传输线圈(Power Transfer Coil)**:这是无线充电系统的核心组件。通过两个线圈之间的电磁耦合实现能量传递,其设计和布局对充电效率及工作距离有着重要影响。 4. **安全保护机制**:为了确保设备的安全性与可靠性,5W无线充电电路包含过热、过流以及短路保护功能以防止潜在的损害或安全隐患出现。 文档“NVSP0019_SCH_V1.1.pdf”可能是一份详细的电路设计图纸或者规格说明文件,其中包含了布局图示、元器件选择和参数设置等信息。而图片“FmsuDk8Y-1Mb0Ayry2lj2lFU-qYR.png”的内容可能是关于实际的物理构造或某个部分的具体示意图。 学习并理解这个5W无线充电电路方案,有助于深入了解无线充电技术的工作原理,并结合高通QC2.0协议来优化设计以提高效率和用户体验。这对于硬件工程师以及那些希望了解相关技术的人士来说是非常有价值的资源。
  • Qi线
    优质
    本资源提供详尽的Qi标准无线充电电路设计图,涵盖发射端与接收端原理图及PCB布局,适合电子工程师学习参考。 QI标准的无线充电器原理图基于88A方案设计,具有低成本、性能稳定以及体积小的特点。
  • 天天读(3):赏析线发射与线设计
    优质
    本篇文章为《电路图天天读》系列第三篇,聚焦于解读无线充电技术中发射端和接收端的电子线路设计,深入分析其工作原理及优化方案。适合电子爱好者和技术人员阅读学习。 本段落将深入探讨无线充电技术及其关键组件的设计,包括振荡信号发生器和谐振功率放大器。 在无线充电系统中,振荡信号发生器是核心部分之一,负责生成特定频率的交流电信号。在这个电路设计里,NE555定时器被用来作为产生约510kHz稳定输出信号的振荡源。这款多功能模拟集成电路通过内部比较器和非稳态多谐振荡器提供精确的时间控制功能。 接下来是谐振功率放大器的设计环节,其任务在于将产生的信号增强至足够驱动发射线圈形成强电磁场的程度。此部分由LC并联谐振回路及IRF840开关管构成。具体来说,电感L(142μH)与固定电容680pF和可调电容200pF共同组成LC回路,并决定了系统的谐振频率;而大功率MOSFET IRF840则能够处理高达8A的电流并保持较低内阻,适合于放大电路应用。由于功耗较大,IRF840需配备散热片来避免过热问题。 发射线圈与接收线圈之间的距离影响无线充电效率及范围。当两者均处于谐振状态时,能量传输最为高效:发射端产生的交变电磁场会在接受端感应出电压,并通过全波整流、电容滤波以及稳压二极管的稳定作用转化为稳定的直流电力供设备使用。 在接收电路中,高频交流信号首先由1N4148快速二极管进行全波整流处理;然后利用3300F的大容量电解电容器来平滑电压波动。此外,5.1V稳压二极管保证输出电压的稳定性。为了控制充电时间并确保电流恒定以支持不同速度(比如快充和慢充模式下分别为2.2mA与0.55mA)的操作需求,设计采用了恒流充电策略。 综上所述,在无线充电技术的应用中,对振荡器频率、谐振回路参数以及接收端的充电过程进行精确控制是实现高效且安全能量传输的关键。此系统涉及到了电子振荡、功率放大、谐振电路和电源转换等多个方面,并需要深入理解这些基本原理以便于设计与优化无线充电设备。
  • AM/FM/SW线器-Si4730/Si4735设计
    优质
    本方案基于Si4730/Si4735芯片设计AM/FM/SW无线电接收器,涵盖硬件选型、软件配置及调试步骤,适用于便携音频设备。 我设计了一个具有DSP技术的FM立体声/ AM / SHORTWAVE无线电接收器,并使用Arduino Uno或Nano以及1.8英寸彩色TFT ST7735显示屏来实现这一项目。 硬件组件包括: - Arduino UNO × 1个 - 带按钮的旋转编码器 × 1个 - 按钮开关(瞬间)× 3个 - 阻容元件:电容器、电阻和电感,具体参数如下: - 电容器: 10 µF, 47 µF - 电阻: 1kΩ ×2, 10kΩ ×1, 100 Ω×1, 2.2 kΩ×2 - 电感:10uH ×2 - Silicon Labs PL102BA-S V2模块Si4730-D60 × 1个 - TFT ST7735 1.8英寸SPI彩色显示屏 × 1个 - 铁氧体条形天线(300 uH)× 1根 此无线电接收器具有以下特性: - 使用Si4730-D60集成电路,它是一个完整的接收器,并且采用了与SDR接收器相同的DSP技术。 - Arduino通过I2C数据接口发送控制命令给Si4730-D60。图形界面则由1.8英寸ST7735彩色TFT显示屏构成,采用SPI数据接口进行通信。 - 显示屏可以显示频率、信号强度以及频带波长等信息,并支持两种颜色主题和14个不同频段的选择功能。 - 此外还设计了AM选择的七个BW滤波器。 - 支持从100kHz到30MHz范围内的LW/MW/SW/CB接收。 为了输出音频,需要额外连接外部放大设备,例如计算机或具有线路输入端口的扬声器;也可以使用LM386 IC组装一个简单的DIY放大器。