
四元数、欧拉角与旋转矩阵
5星
- 浏览量: 0
- 大小:None
- 文件类型:None
简介:
本文探讨了四元数、欧拉角和旋转矩阵在三维空间中表示物体旋转的基本概念及其相互转换方法。适合希望深入了解3D图形学或机器人技术的读者。
旋转矩阵、四元数以及欧拉角之间的转换涉及一系列数学公式推导过程。这些转换在三维空间中的物体姿态表示与变换中有广泛应用。从旋转矩阵到四元数的转换可以通过特征向量分解或直接通过特定坐标轴计算得到,而由四元数转回至旋转矩阵则需要利用四元数乘法和单位化性质来实现。
欧拉角通常以三个独立的角度(绕不同轴)表示物体姿态。从欧拉角到旋转矩阵的转换可以通过依次应用各角度对应的旋转变换矩阵相乘获得,而逆向操作则是通过求解方程组得到各个单独的角度值。
值得注意的是,在进行这些变换时需要考虑奇异性问题(如万向锁现象),这会影响某些方法的有效性。此外,四元数因其紧凑表示和避免奇异性的优势在工程实践中更受欢迎。
全部评论 (0)
还没有任何评论哟~


