Advertisement

具备三陷波特性的超宽带天线设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究致力于开发一种具有三陷频特性的新型超宽带天线。通过优化结构参数,该设计能在特定频率范围内实现信号抑制,同时保持良好的宽带性能和小型化特点,适用于复杂的电磁环境。 我们设计了一款基于共面波导(CPW)馈电的小型化超宽带天线,并赋予其三陷波特性的功能。该天线采用了矩形贴片组合作为辐射单元,通过在辐射贴片上开倒U型、圆弧形和S形缝隙来实现陷波效果,有效地抑制了WiMAX(3.3~3.7GHz)、WLAN(5.150~5.825GHz)以及X波段卫星通信系统下行频率段(7.25~7.75GHz)对超宽带系统的干扰。实验结果显示:该天线在频带范围为3.1至12.0GHz时,电压驻波比小于2,并在整个工作频段内保持稳定的增益和良好的辐射方向特性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 线
    优质
    本研究致力于开发一种具有三陷频特性的新型超宽带天线。通过优化结构参数,该设计能在特定频率范围内实现信号抑制,同时保持良好的宽带性能和小型化特点,适用于复杂的电磁环境。 我们设计了一款基于共面波导(CPW)馈电的小型化超宽带天线,并赋予其三陷波特性的功能。该天线采用了矩形贴片组合作为辐射单元,通过在辐射贴片上开倒U型、圆弧形和S形缝隙来实现陷波效果,有效地抑制了WiMAX(3.3~3.7GHz)、WLAN(5.150~5.825GHz)以及X波段卫星通信系统下行频率段(7.25~7.75GHz)对超宽带系统的干扰。实验结果显示:该天线在频带范围为3.1至12.0GHz时,电压驻波比小于2,并在整个工作频段内保持稳定的增益和良好的辐射方向特性。
  • 线与制造
    优质
    本研究专注于宽带阻带滤波天线的设计与制造技术,旨在开发具备宽频带、高选择性及抑制特定干扰频率的新型天线。通过优化结构参数和材料选用,实现高效电磁信号传输,适用于雷达系统、无线通信等领域的高性能需求。 本段落详细介绍了宽阻带滤波天线的设计与制作过程,旨在通过抑制无线通信系统中的带外信号干扰来保护工作频段的纯净度,并确保天线具有较宽的工作频率范围及有效的阻带性能。 文章首先阐述了微带天线的基本设计。鉴于其轻便、小巧且成本低廉的特点,微带天线在现代无线通信领域内得到了广泛应用。本项目中的微带天线设定了2.45GHz的中心工作频率,并采用介电常数为2.2的材料作为基板,尺寸具体为48mm x 45mm。馈电方式采用了3.2毫米宽的微带线,并通过引入一段四分之一波长阻抗变换器优化了天线与50欧姆传输线路之间的匹配度。经过一系列调整后,最终获得了理想的S11参数和中心频点方向图。 接着文章深入探讨了一个二阶切比雪夫低通滤波器的设计过程。为了减少微带天线在非工作频率上的谐振效应,设计的该滤波器旨在覆盖2.43GHz至2.46GHz的工作区间,并具有宽广的阻带特性以抑制不必要的信号干扰。 完成上述两个组件的设计后,文章进一步描述了如何将二者整合为一个完整的系统。通过微调优化连接方式和参数设置,确保整个系统的性能既满足宽带阻带要求又能保持良好的天线工作特性。 最后,本段落通过对该滤波天线的测试验证了其设计的有效性与预期一致。实际测量结果证明,在宽广的阻带上仍然能够维持优秀的频段表现,并且通过特定设备获取到了关键评估指标如S11参数和辐射方向图等数据。 综上所述,本篇文章揭示了在开发具有强大干扰抑制功能滤波天线时所需考量的关键因素:包括微带天线与滤波器之间的兼容性以及如何精准调整以确保宽阻带的同时不牺牲工作频段的性能。此外还强调了仿真结果与实际测试一致性的重要性作为评估设计成功与否的重要标准,这对提升现代无线通信系统的可靠性和效率至关重要。
  • 基于共面导馈电线(2012年)
    优质
    本研究于2012年提出了一种采用共面波导馈电技术的新型超宽带天线设计方案,旨在实现更宽的工作频带与更好的辐射性能。 本段落设计了一种采用共面波导馈电的小型平面超宽带天线。该天线由树形辐射单元与共面波导组成,在保持体积小巧的同时具备工作带宽内的稳定方向特性。通过电磁仿真软件对影响性能的关键参数进行了详细地仿真、分析和优化,确定了理想的尺寸配置。经过制作并测试优化后的超宽带天线后发现其工作频段为3~11GHz,并且实测结果与仿真预测高度一致,证实了利用共面波导馈电方法设计的超宽带天线的有效性。
  • 双层微线
    优质
    本项目专注于宽带双层微带天线的设计与优化,通过创新结构实现更宽的工作频段和高效性能,在无线通信领域具有重要应用价值。 微带天线是在带有导体接地板的介质基片上附加导体贴片构成的。通过使用微带线或同轴探针给贴片馈电,在贴片与接地板之间激发电磁场,并且通过贴片上的缝隙向外辐射信号。
  • 线与原理【(美)尚茨 著】
    优质
    本书由美国作者尚茨撰写,深入浅出地阐述了超宽带天线设计的基本理论和实际应用技巧。书中涵盖了超宽带技术的核心概念、工作原理及最新研究成果,并提供了丰富的实例分析和技术指导,适合相关领域的研究人员与工程师参考阅读。 本段落介绍了超宽带天线的原理与设计,并对各种超宽带天线进行了基本总结。
  • 如何线及扩展微线
    优质
    本文探讨了天线带宽的基本计算方法,并介绍了几种有效的技术手段来扩展微带天线的带宽,旨在为无线通信系统的设计提供理论支持和实践指导。 本段落介绍了天线带宽的定义,并推导了天线阻抗相对带宽的一般式,特别强调了微带天线的带宽特性。
  • WSIW缝隙阵列线
    优质
    本文旨在设计并实现一款W波段宽带SIW(基片集成波导)缝隙阵列天线,以满足高性能毫米波通信的需求。通过优化结构参数和仿真分析,提出了一种新颖的缝隙排列方式,显著提升了天线的工作带宽与辐射效率,为未来5G及6G移动通信系统提供了潜在的技术支持。 W波段宽带SIW缝隙阵列天线设计
  • 基于遗传算法线优化
    优质
    本研究运用遗传算法对超宽带天线进行优化设计,旨在提升其频带宽广度及性能稳定性,为无线通信技术的发展提供新的解决方案。 为解决传统超宽带天线设计中存在的辐射脉冲波形拖尾振荡问题, 提出了一种基于遗传算法的优化方法。该方法通过采用保真系数和回波损耗作为适应度函数,形成目标函数,并在此基础上对确定结构进行参数调整以实现时域辐射波形的改进。 具体而言,在设计过程中采用了以下步骤: - **加权目标函数**:将天线输出波形与理想模型之间的相似程度(即保真系数)和信号传输效率(回波损耗)相结合,作为遗传算法优化过程中的指导标准。 - **参数调整策略**:通过编码技术将关键的几何尺寸等转换为可以被遗传操作处理的形式,并运用选择、交叉及变异的操作来不断改进天线设计以达到最优目标函数值。 实验结果表明: - 采用上述方法所设计出的一款单极锥超宽带天线,其在高低平面内的辐射波形一致性良好。 - 相较于传统设计方案而言,在优化后的天线上观察到了显著减少的拖尾振荡现象,这证明了该技术的有效性。 此外,通过仿真验证(使用时域有限差分法),还展示了优化后单极锥超宽带天线在阻抗特性和辐射方向图等方面的优越性能。综上所述,本段落提出的方法为解决传统UWB天线设计中的波形拖尾振荡问题提供了一种有效途径,并且具有重要的工程应用价值。
  • 关于Ku线研究 (2012年)
    优质
    本论文专注于Ku波段宽带微带天线的设计与优化,探讨了其在卫星通信中的应用潜力,提出了一种新颖高效的天线结构设计。 本段落提出了一种新型Ku波段宽频带微带天线的设计方法。该设计通过在接地板上开设H型缝隙进行耦合馈电,并在辐射贴片表面添加矩形缝隙以扩展工作带宽,同时还在天线底部增设反射板来提高增益并优化方向图的前后比性能。利用高频仿真软件HFSS对该设计方案进行了模拟和优化,结果显示该结构天线具有良好的宽带谐振特性:回波损耗低于-10 dB,阻抗相对带宽达到39.8%,交叉极化电平小于-28 dB,并且前后比超过19 dB。