Advertisement

基于小波变换和图像增强的红外小目标检测(2013年)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种结合小波变换与图像增强技术的方法,旨在提高红外图像中小目标的检测精度与效率。该方法有效提升了复杂背景下的目标识别能力。 本段落提出了一种基于小波变换的单帧红外图像检测方法,将小目标检测问题简化为带通滤波的过程。该方法首先利用小波变换分解图像,并直接舍弃低频分量背景信息;随后对提取出的三个高频成分分别进行分析以去除噪声;接着重构各个高频部分;最后通过增强技术提升小目标灰度并进一步抑制干扰因素。计算机仿真结果显示,此方法能够准确高效地检测到小目标,并且能够在一定程度上克服云层和建筑物带来的干扰问题。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 2013
    优质
    本研究提出了一种结合小波变换与图像增强技术的方法,旨在提高红外图像中小目标的检测精度与效率。该方法有效提升了复杂背景下的目标识别能力。 本段落提出了一种基于小波变换的单帧红外图像检测方法,将小目标检测问题简化为带通滤波的过程。该方法首先利用小波变换分解图像,并直接舍弃低频分量背景信息;随后对提取出的三个高频成分分别进行分析以去除噪声;接着重构各个高频部分;最后通过增强技术提升小目标灰度并进一步抑制干扰因素。计算机仿真结果显示,此方法能够准确高效地检测到小目标,并且能够在一定程度上克服云层和建筑物带来的干扰问题。
  • 伪中值滤技术(2013)
    优质
    本文提出了一种结合伪中值滤波和小波变换的创新方法,有效提升红外图像的质量和细节清晰度,尤其在低信噪比条件下表现优异。 针对红外图像对比度低且信噪比差的特点,本段落提出了一种基于伪中值滤波和小波变换的弱小目标增强算法。首先通过伪中值滤波去除部分噪声,然后进行小波变换得到相应的系数。对于小于阈值的小波系数,则采用临近系数保留法进行进一步处理以避免将真实的目标误判为噪声而被过滤掉;而对于大于阈值的系数则执行非线性增强操作。最后重新构建图像,获得去噪且对比度提升的效果。实验结果显示该算法有效提高了红外图像质量,并更符合人眼视觉特性需求。
  • 一种方法(2015
    优质
    本文提出了一种利用小波变换技术来提升红外图像质量的方法。通过优化算法处理噪声与细节,增强了目标识别和场景分析能力,在2015年取得了显著效果。 图像增强处理是红外图像预处理中的必要且关键步骤。由于目标物体信号弱导致的对比度低以及外界噪声干扰造成的图像质量差等问题,本段落提出了一种结合小波变换、奇异值分解与阈值滤波技术的新型算法。 具体而言,该方法首先通过小波变换将红外图像分为高频系数和低频系数两部分。在低频域中应用奇异值分解来提升对比度及改善图像质量;而在高频域则采用阈值滤波以减少噪声并突出细节特征。最后,经过逆向的小波重构过程获得最终的增强效果。 实验结果显示:相较于传统方法,该算法能够显著提高红外图像的对比度和细节表现力,在视觉上更接近于人类感官体验的标准,因此被认为是一种有效的处理手段。
  • 平稳与Retinex技术
    优质
    本研究提出了一种结合平稳小波变换和平面Retinex理论的新型算法,旨在显著提升红外图像的视觉效果和细节清晰度。 为了克服基于小波变换的红外图像增强方法在视觉效果上的不足,本段落提出了一种结合平稳小波变换和平坦视网膜效应(Retinex)理论的新方法来提升红外图像的质量。具体来说,该方法首先通过多尺度Retinex算法对经过平稳小波分解后的低频子带进行处理以提高其视觉表现和亮度均匀性;其次,采用贝叶斯萎缩阈值技术去除高频子带中的噪声,并依据低频信息的局部对比度与模糊规则来确定用于增强高频细节的增益系数;最后,将优化过的高低频成分结合重构为最终的增强图像。通过大量实验验证了该方法的有效性,并将其与其他常见算法如双向直方图均衡法、二代小波变换处理和Curvelet变换技术进行了对比分析。结果显示,所提方案不仅能够更好地突出图像细节特征而且有效减少了噪声干扰,在整体视觉效果上也有了显著提升。
  • 与直方均衡方法
    优质
    本研究提出了一种结合小波变换和直方图均衡技术的新型算法,旨在提升红外图像的质量和清晰度,特别适用于低光照或恶劣环境下的成像需求。 基于红外图像低分辨率、低对比度及视觉特性差的特点以及传统直方图均衡化方法会丢失细节并增强噪声的缺点,本段落提出了一种结合小波变换多尺度特性和直方图均衡化的新型算法来改进红外图像增强技术。 该研究聚焦于解决由自然因素和技术限制导致的红外图像质量问题。红外成像通常因目标与背景间的热交换、较长波长及探测器单元不一致性等因素而呈现低信噪比、高空间相关性等特性,这些问题影响了其在侦查和评估中的应用效果。 传统上采用直方图均衡化来增强对比度并改善亮度分布。然而这种方法的局限在于它可能丢失图像细节,并且会增加噪声,从而降低整体质量。小波变换作为一种多尺度分析工具,在不同分辨率下提取局部特征方面具有优势,这为改进红外成像技术提供了新的视角。 结合这两种方法的新算法首先通过小波变换对原始图像进行分解和处理以增强其局部特性;之后再应用直方图均衡化调整全局对比度。这样的组合能够确保在提高图像清晰度的同时保留更多细节信息,并减少噪声的影响,从而达到更好的视觉效果。 研究者们利用Matlab仿真平台对该算法进行了测试验证,展示了该方法的有效性及其优化潜力。这项工作对于提升红外成像技术的应用性能具有重要意义,尤其是在科学研究和军事领域中对目标侦查与评估能力的提高方面。 关键词包括“红外”、“图像增强”、“小波变换”、“直方图均衡化”以及“对比度”,这些术语反映了该研究的核心内容和技术路径。
  • 递归CycleSpinningWavelet-Contourlet方法 (2013)
    优质
    本文提出了一种结合Wavelet-Contourlet变换与递归CycleSpinning技术的创新方法,旨在提升红外图像的质量和清晰度。该方法通过优化细节表达和对比度增强,在复杂环境下显著改善了目标识别性能。 针对Contourlet变换缺乏平移不变性的缺陷,本段落提出了一种基于小波-Contourlet变换的红外图像增强算法,并结合递归Cycle Spinning技术来消除小波-Contourlet变换中的失真现象。实验结果表明:相较于单独使用小波变换和单独使用Contourlet变换的方法,该方法在去噪效果上更为显著,能够获得更高的PSNR值,从而改善了图像的视觉效果。
  • DENTIST-master_infrared____
    优质
    DENTIST是一种专为提升红外影像中小目标检测精度而设计的方法。通过优化算法处理红外数据,有效增强识别与追踪小型物体的能力,在复杂背景下实现精准定位。 在IT领域尤其是计算机视觉与图像处理方面,红外小目标检测技术具有重要意义,并广泛应用于军事、安全监控及自动驾驶等领域。这是因为红外成像能够在光照不足或完全黑暗的环境中提供有效的视觉信息。 1. **红外成像**:这种技术利用物体发出或反射出的红外辐射来生成图像,在夜间和烟雾等恶劣条件下仍能正常工作。 2. **小目标识别挑战**:在红外图象中,尺寸较小的目标往往难以从背景噪声中区分出来。这些目标包括人、车辆及飞机等,它们在这样的环境中通常特征不明显。 3. **RIPI算法应用**:作为专为红外图像中的微小目标设计的一种方法,RIPI(Region of Interest Propagation and Integration)可能涉及对原始数据进行预处理步骤如噪声过滤和增强,并识别感兴趣区域。 4. **基于块的分析策略**:该技术采用局部分块的方式处理图像,这种做法有助于精确地捕捉特征并提高检测精度。 5. **张量加权的重要性**:通过融合不同尺度或方向的信息来突出目标特性同时减少背景干扰,从而改进目标识别效果。 6. **PCA的应用价值**:主成分分析(PCA)用于提取关键信息和简化数据复杂度,在红外图像处理中可以帮助区分目标与背景。 7. **DENTIST-master项目框架**:这可能是一个开源平台,包含实现RIPI算法的代码库,供研究者及开发者使用。用户可以通过编译运行这些代码来评估其在特定场景下的性能。 8. **实际应用场景**:红外小目标检测技术被广泛应用于军事敌我识别、安全监控异常行为发现以及无人驾驶车辆障碍物感知等领域。 9. **持续优化方向**:尽管RIPI算法具备一定优势,但结合深度学习和卷积神经网络等现代技术进一步提升其性能是未来研究的重要方向。
  • 方法
    优质
    本研究探讨了利用小波变换技术对数字图像进行增强的方法,旨在提升图像细节清晰度与视觉效果。通过频域分析优化图像质量,适用于多种图像处理场景。 该程序使用MATLAB R2011b进行仿真,并借鉴了参考文献中的思想。主要包括5个程序:wave_ehc_zxp_test、wave_ehc_zpx、wave_zpx、xiaobo_zengqiang和xiaobo_zengqiang1。其中,wave_ehc_zpx是主程序,而wave_ehc_zpx_test则是用于测试主程序的辅助程序(需要修改图片读取的部分)。其他均为该程序中的子程序。
  • 技术
    优质
    本研究探索了利用小波变换进行图像增强的方法,通过改进算法提升了图像细节与清晰度,在保持图像整体结构的同时增强了局部特征。 基于小波变换的图像增强可以通过MATLAB编写来实现,并且可以很好地达到预期效果。如果有任何问题或建议,请提出,本人为初学者,在学习过程中还有很多不懂的地方。
  • IPI
    优质
    本研究提出了一种基于图像块处理的创新方法,专门针对IPI(IRST光电平台)系统中的红外弱小目标检测问题,有效提升了微弱信号下的目标识别能力。 【IPI方法详解】 IPI(Iterative Projected Pursuit)是一种在图像处理领域用于检测弱小目标的有效算法,在红外成像中有广泛应用,尤其是在军事、航空航天及监控等领域。这些领域的应用场景中,红外信号往往微弱且易被噪声掩盖。 红外图像是通过温度差异生成的,因此包含大量背景信息和细微的目标信号。IPI方法通过迭代投影追求策略在高噪声环境下有效分离出目标,提高检测精度与鲁棒性。其核心在于将图像分块处理,简化全局优化问题为局部化的问题解决方式。 【算法步骤】 1. **图像分割**:首先对原始红外图进行切割成多个小块。 2. **特征提取**:从每个小块中抽取灰度值、边缘信息或纹理等关键特征。 3. **降噪处理**:利用投影技术(如PCA或L1正则化)去除背景噪声,增强目标信号的可见性。 4. **迭代优化**:通过反复调整投影方向和权重来逐步改善检测效果,提高目标与背景之间的对比度。 5. **定位分析**:在迭代过程中比较不同图像块以识别潜在的目标位置。这一步通常涉及阈值设定及连通成分分析等技术确定最终的坐标信息。 6. **结果汇总**:将所有小区域的结果整合起来生成完整的检测报告,提供目标的确切位置和形状。 【相关代码文件解析】 - `APG_IR.m`:可能实现自适应梯度下降功能,用于优化投影权重或方向。 - `winRPCA_median.m`:采用窗口化鲁棒主成分分析(RPCA)进行降噪及背景建模,并结合中值滤波器增强抗干扰性能。 - `main.m`:作为主要执行文件调用上述函数实现IPI流程。 - `pos.m`:可能包含定位算法的具体实施细节。 - `readme.txt`:提供关于项目的技术说明或使用指南文档。 - `result`:存放检测结果的图像和数据集的位置。 - `image`:存储原始红外图片文件夹。 综上所述,IPI方法通过分块处理与迭代优化,在复杂背景噪声条件下实现高效的小目标定位。相关代码展示了该算法的具体实施过程,并为研究者提供了宝贵的资源支持。