2022年全国大学生数学建模竞赛B题要求参赛者运用数学理论与方法解决实际问题,涉及优化、预测等挑战,旨在培养学生的创新能力和团队协作精神。
本段落主要研究无人机在编队飞行中的纯方位无源定位问题,旨在提高编队的视觉效果和观赏性。为了确保各无人机保持相对位置恒定,在分析了无人机定位问题的基础上,构建数学模型并借助MATLAB软件进行编程求解,以确定最佳定位策略。
针对第一个问题,即三点定位法的应用:假设三架已知固定点发出信号,目标为未知点P。解决方法包括三种情况:
1) 当测量到未知点P与三个已知点之间的距离时,可以画出三个圆的交集来确定位置。
2) 若存在误差导致圆相交形成区域,则先计算两个圆的交点,并取这三个交点坐标的平均值作为目标无人机的位置。
3) 如果三个圆不相交,则处理两对圆的情况以找到中心O并利用比例半径法,再通过求解得到P坐标。
第二个问题涉及RSSI测距和多边定位方法:至少需要三架发射信号的无人机。实际操作中可能选择两至三架作为参考点,并使用最小二乘算法估算目标位置及计算误差值。实验结果表明,在四架与五架无人机的情况下,前者预测误差更小且更为精确。
第三个问题通过多重目标分析法来解决方向调整和均匀分布的问题:考虑到潜在的测量误差影响角度范围在8°到12°之间变化,并确保模型的有效性。具体而言,实际飞行中采用锥形编队模式并利用投影和平面几何知识维持整体结构稳定。
本研究涵盖了多个关键知识点:
- 三点定位法
- RSSI测距技术
- 多边定位方法及其算法实现(如最小二乘)
- 平面几何原理应用在二维空间中的角度计算与图形性质分析
- 多重目标优化策略以求得最佳方案
这些知识和技术的结合不仅解决了无人机编队飞行中遇到的具体问题,还为实际操作提供了坚实的理论基础和实用技术指导。