Advertisement

基于单片机和NTC热敏电阻的温度测量仪设计原理图及项目文件.zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源包提供了一种基于单片机与NTC热敏电阻的温度测量仪器的设计方案,包括详细的原理图、代码以及相关文档。适用于电子工程学生或专业人士进行学习和参考。 该项目可实现温度的实时测量,并包含原理图及代码。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • NTC.zip
    优质
    本资源包提供了一种基于单片机与NTC热敏电阻的温度测量仪器的设计方案,包括详细的原理图、代码以及相关文档。适用于电子工程学生或专业人士进行学习和参考。 该项目可实现温度的实时测量,并包含原理图及代码。
  • .rar
    优质
    本设计采用单片机结合热敏电阻实现温度测量系统,可精确检测并显示环境温度,适用于工业、农业及日常生活中的温度监控需求。 本设计包含了详细的技术文档及资料,其中包括程序代码、仿真图、论文以及焊接过程的指导材料等内容。以下是该设计方案中的部分内容: **一、主要功能和技术指标** 温度控制系统需完成以下基本要求: 1. 具备声光报警机制; 2. 使用液晶显示器进行数据显示; 3. 支持设定和显示温度上下限,并在超出这些限制时发出警报; 4. 通过手动操作来设置温度的上限与下限。 **二、代码示例** ```c #include // 头文件 #include #includeeeprom52.h // 调用STC89C52单片机EEPROM控制程序 #include math.h #define uchar unsigned char // 宏定义 #define uint unsigned int // 宏定义 // LCD1602的数据传输IO口及命令数据、读写等控制IO的声明 sbit LCD1602_dat = P0; sbit LCD1602_rs = P2^5; sbit LCD1602_rw = P2^6; sbit LCD1602_e = P2^7; // 蜂鸣器、指示灯及按键等IO口的声明 sbit beep = P2^0; // 蜂鸣器 sbit led_1 = P1^5; // 上限超温指示灯 sbit led_2 = P1^6; // 下限低温指示灯 // 设置按键、加减调节按钮的声明 sbit key_1 = P3^5; sbit key_2 = P3^6; sbit key_3 = P3^7; // 温度传感器相关的IO口定义 sbit TCL2543_EOC = P1^0; // 转换结束标志 sbit TCL2543_CLK = P1^1; // I/O时钟输入 sbit TCL2543_ADIN= P1^2; // 串行数据输入端 sbit TCL2543_DOUT= P1^3; // 串行数据输出端 // 其他变量定义 float zhi; // 暂存读取的输入值 int temp; // DS18B20温度传感器获取的数据 char temp_h, temp_l; // 温度上限和下限存储变量 uchar state, ms; // 系统设置项、50ms定时器计数 bit s1, beep1; // 设置闪烁标志位及报警状态标志 // 延时函数定义 void delay(uint T) { while(T--); } ``` 以上是温度控制系统设计中的部分代码片段,展示了硬件接口的初始化和变量声明等关键内容。
  • 51NTCMAX6675(附源程序Proteus仿真
    优质
    本项目基于51单片机设计了一款集成NTC热敏电阻与MAX6675热电偶模块的温度检测系统,提供详尽硬件电路图、源代码以及Proteus仿真文件。 基于51单片机NTC热敏电阻与MAX6675热电偶测温设计,包含源程序及Proteus仿真文件。
  • PICNTC控器(含源代码)
    优质
    本项目介绍了一种基于PIC单片机控制的NTC热敏电阻温度控制器的设计与实现。包括详细硬件电路图及软件源代码,为用户提供全面的技术支持。 使用PIC单片机实现对NTC热敏电阻和DS18B20的数据采集与处理,并通过按键扫描响应用户操作,在LCD断码屏上显示结果,构成一个完整的风机盘管温控器系统(包括原理图及源代码)。
  • ADC NTC(10k).zip_10k_NTC 10k_NTC_NTC
    优质
    本资源提供关于ADC与NTC热敏电阻在温度测量中的应用,重点讨论了10k欧姆NTC电阻的特性及其在温度检测中的作用。 NTC,10K,15W4K,新手必备,亲测可用。
  • 优质
    本项目设计了一种基于单片机控制的热敏电阻测温电路,通过精确测量环境温度变化,实现了高精度、低成本的温度监测系统。 单片机在电子产品中的应用越来越广泛,在很多产品里都用到了温度检测与控制功能。然而,这些电路通常设计复杂且成本较高。本段落提供了一种利用单片机多余I/O口进行低成本的温度检测方法,该方案不仅简单易行,并适用于几乎所有类型的单片机。 具体电路图如下:P1.0、P1.1和P1.2代表三个单片机的I/O脚;RK为一个精度高的100k欧姆电阻;RT是具有高精度(误差范围在±1%)的热敏电阻,阻值同样为100K欧姆;R1是一个普通的100Ω电阻;C1则是一颗容量为0.1μF的瓷介电容。 电路工作原理如下: - 首先将P1.0、P1.1和P1.2设置成低电平输出,使电容器C1完全放电。 - 接着把P1.1与P1.2设为输入状态而让P1.0保持高电平输出。此时通过RK电阻给C1充电,并启动单片机内部计时器开始计时。当检测到P1.2变为高电平时,说明C1上的电压已经达到了单片机的门限值(即达到可以被识别为逻辑“1”的阈值),这时记录下从开始充电至P1.2变高所用的时间T1。 - 然后将所有三个I/O脚重新设置成低电平输出,让C1再次放电完全。 - 最后把P1.0和P1.2设为输入状态而令P1.1保持高电平输出。此时通过热敏电阻RT给C1充电,并重启单片机内部计时器开始新的计时过程。当检测到同样的逻辑变化(即P1.2由低变高)后,记录下这次的充电时间T2。 根据两个时间段(T1和T2)的比例关系可以推算出当前环境温度值,从而实现对温度的有效监测与控制功能。
  • NTC
    优质
    本简介探讨了NTC(负温度系数)热敏电阻的工作原理及其在不同温度下的阻值变化规律,并提供了相应的计算方法。 我希望能够帮助大家更好地学习NTC热敏电阻温度阻值的计算方法。
  • NTC方案
    优质
    本项目专注于开发基于NTC(负温度系数)热敏电阻的精确温度检测解决方案。通过优化电路设计与算法,实现高效、稳定的温度监测,广泛应用于工业及消费电子领域。 NTC温度采集方案提供了详细的算法及相关程序、硬件设计等内容。
  • NTC技术其线性路.pdf
    优质
    本文档详细介绍了NTC热敏电阻的工作原理及在温度测量中的应用,并探讨了如何通过设计线性化电路来提高其测量精度。 NTC热敏电阻的温度测量技术和线性电路设计是重要的技术内容。这类电阻在不同的温度下表现出显著的变化特性,使其成为精确测量温度的理想选择。通过合适的电路设计,可以将非线性的NTC电阻输出转换为更易于处理的线性信号,这对于提高传感器系统的整体性能至关重要。
  • 51仿真源程序
    优质
    本项目介绍了一种利用51单片机和热敏电阻实现的温度测量系统的设计与仿真过程,并提供了相关的源代码。 基于51单片机热敏电阻温度计的仿真设计资料包括源程序和仿真文件。