Advertisement

ZVS_QRC_BUCK.zip_ZVS Buck电路_BUCK准谐振电路_betterasr_buck

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源包提供了ZVS(零电压开关)QRC BUCK电路的设计方案与详细文档,适用于需要高效、低损耗BUCK变换器的电源设计工程师。 零电压开关准谐振电路(ZVS_QRC_Buck)SIMULINK仿真模型

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ZVS_QRC_BUCK.zip_ZVS Buck_BUCK_betterasr_buck
    优质
    本资源包提供了ZVS(零电压开关)QRC BUCK电路的设计方案与详细文档,适用于需要高效、低损耗BUCK变换器的电源设计工程师。 零电压开关准谐振电路(ZVS_QRC_Buck)SIMULINK仿真模型
  • Buck 的 PI 控制闭环_Buck 单相的闭环控制
    优质
    本研究探讨了PI控制器在Buck变换器中的应用,重点分析了单相Buck电路的闭环控制系统设计与性能优化。 buck_PI_buck闭环PI控制_buck闭环_buckpicontrol_buck单相buck电路闭环电路_buck电路pi参数_源码.zip
  • LC的原理与
    优质
    本文详细介绍了LC谐振充电电路的工作原理,并提供了具体的电路图示例,帮助读者深入理解其设计和应用。 LC谐振充电电路如图3-24所示,直流电压E经过限流电感向储能电容器C充电。
  • buck-supercapacitor.zip_BuckPI参数_Buck超级容_闭环仿真_充_恒流控制
    优质
    本资源包包含Buck电路PI参数设计、Buck超级电容充电电路及恒流控制方法,附带闭环仿真实验数据和模型。适合电源管理研究与应用。 基于Buck变换电路的双闭环超级电容器充电电源MATLAB仿真模型采用PI调节器进行恒流控制充电,效果良好。
  • 中频双调放大器
    优质
    本简介讨论了一种采用中频双调谐回路设计的谐振放大器电路,特别适用于广播接收机中的图像和声音信号选择及放大。通过优化电路参数,该设计方案能有效提升选择性和稳定性,减少外部干扰对系统性能的影响。 由电感和电容构成的谐振回路作为负载,在接近并联谐振频率的情况下,并联谐振阻抗值会变得非常大,从而使得放大器能够获得较高的电压增益;而在远离谐振点的其他频率上,回路阻抗迅速下降,导致放大器增益快速减小。因此,调谐放大器通常具有高增益和良好频率选择性的特点,并且是窄带型的。使用双调谐回路设计的放大器,在通频带内可以实现较为平坦的响应特性,并在频带边缘处展现出更加陡峭的截止效果。
  • LCC的Simulink模型
    优质
    本研究构建了LCC谐振电路的Simulink仿真模型,旨在分析其电气特性与优化设计参数。通过该模型,可以深入探究不同条件下的谐振行为及性能表现。 LCC谐振模型的Simulink实现。
  • 串联与并联
    优质
    《串联与并联谐振电路》一书深入探讨了电气工程中两种基本谐振现象,分析了它们的工作原理、特性及应用。 ### 串并联谐振电路知识点详解 #### 一、实验背景与目的 **实验目的:** 1. **深入理解串并联谐振电路的工作原理:**通过实验加深对串并联谐振电路条件及特性的理解,并掌握谐振频率的测量方法。 2. **品质因数Q与通频带的物理意义:**学习如何理解电路品质因数Q和通频带的物理意义及其测定方法。 3. **频率特性曲线的测定:**掌握测定RLC串并联谐振电路的频率特性曲线的方法,深刻理解和掌握串联谐振电路的意义及作用。 4. **Multisim软件的应用:**掌握Multisim软件中的Function Generator、Voltmeter、Bode Plotter等仪表的使用以及AC Analysis等SPICE仿真分析方法。 #### 二、串联谐振电路 **实验原理:** 1. 回路阻抗为 \(Z = R + j(\omega L - \frac{1}{\omega C})\),其中 \(\omega\) 是角频率,\(L\) 是电感,\(C\) 是电容。 2. 当 \(\omega L - \frac{1}{\omega C} = 0\) 时,电路中的电流与激励电压同相,电路处于**谐振状态**。 3. 谐振角频率为 \(\omega_0 = \frac{1}{\sqrt{LC}}\),谐振频率 \(f_0 = \frac{1}{2\pi \sqrt{LC}}\)。 **电路处于谐振状态时的特性:** 1. 回路阻抗 \(Z = R\),整个回路相当于一个纯电阻电路。 2. 回路电流 \(I_0\) 数值最大,\(I_0 = \frac{U_s}{R}\),其中 \(U_s\) 为激励电压。 3. 电阻电压 \(U_R\) 的数值最大,\(U_R = U_s\)。 **电路的品质因数Q和通频带B:** 1. 品质因素 \(Q = \frac{\omega L}{R} = \frac{\sqrt{LC}}{R}\)。 2. 截止频率定义为回路电流下降到峰值的0.707倍时所对应的频率,介于两截止频率之间的频率范围称为**通频带B**,即 \(B = \frac{f_0}{Q}\)。 **实验步骤:** 1. 使用Multisim软件创建RLC串联电路。 2. 分别使用AC仿真、波特表、交流电压表等工具测量串联谐振电路的谐振曲线、谐振频率和-3dB带宽。 3. 随频率变化,测量电阻电压、电感电压、电容电压及电流值,并记录所测数据。 4. 根据获取的数据绘制电流、电阻电压及电感电压关于频率的谐振曲线。 **实验结果说明及结论:** 1. 谐振频率仅与元件 \(L\) 和 \(C\) 的数值有关,与电阻 \(R\) 和激励电源的频率无关。 2. Q值越大,曲线尖峰值越尖锐,选择性越好但通频带变窄。 3. 计算品质因数时,需考虑电感的直流阻值。 4. 实际测量中由于电感存在直流电阻的影响,电阻两端电压在谐振点不等于电源电压。 #### 三、并联谐振电路 **实验原理:** 当RLC回路并联谐振时,电感和电容上的电流大小为激励电流的Q倍。此时两者的电流相等但符号相反相互抵消,使得电源电流实际上全部流过电阻R。 **实验步骤:** 1. 使用Multisim软件创建RLC并联电路。 2. 测量绘制I-f谐振频率曲线。 **实验结果说明及结论:** 1. 并联谐振电路的特点在于电感与电容上的电流远大于电源电流,且相位相反,能够实现电流的放大功能。 2. 并联谐振电路适用于信号电流放大的场景应用。 #### 四、误差来源 1. **系统误差**:由设备固有特性引起的无法避免的测量偏差。 2. **读数误差**:调节信号源时同步读取数据,可能导致实际值与理论值存在差异。 3. **图像识别误差**:示波器上的图形未完全达到预期形状,导致测量结果不够精确。 4. **仪器内阻的影响**:在真实操作中考虑万用表、信号源等设备的内阻对最终实验结果产生的影响。 #### 五、实验总结 通过本实验的学习,我们深入了解了RLC串并
  • BUCK和BOOST
    优质
    BUCK电路和BOOST电路是开关电源中常用的两种拓扑结构,分别用于降压和升压变换,广泛应用于电子设备的电源管理。 ### BUCK电路与BOOST电路详解 #### 一、引言 在现代电子设备中,电源管理扮演着至关重要的角色。为了确保设备能够稳定可靠地工作,必须采用合适的电源转换技术来适应不同的电压需求。其中,BUCK电路和BOOST电路是最为常见的两种直流-直流(DC-DC)转换器类型。这两种电路广泛应用于各种电子产品中,如笔记本电脑、手机充电器以及LED照明系统等。本段落将详细介绍BUCK电路和BOOST电路的工作原理、应用特点以及设计注意事项。 #### 二、BUCK电路详解 ##### 2.1 工作原理 BUCK电路,也称为降压变换器,是一种将输入电压转换为较低输出电压的DC-DC转换器。其基本结构包括一个开关(S)、一个电感(L)、一个二极管(D)以及一个输出电容(Co)。当开关S闭合时,电源通过电感L向负载供电,同时电感储存能量;当开关断开时,电感L与输出电容Co共同向负载供电,此时电感释放之前存储的能量。通过控制开关的导通时间和关断时间比例(即占空比),可以调整输出电压的大小。 ##### 2.2 主要特性 - **效率高**:由于BUCK电路主要由无源元件组成,在理想情况下,其转换效率接近100%。 - **稳定性好**:通过闭环控制可以实现非常稳定的输出电压。 - **体积小**:适合于需要小型化设计的应用场景。 ##### 2.3 应用领域 - **移动设备**:智能手机、平板电脑等。 - **计算机系统**:服务器、工作站等内部电源管理。 - **通信设备**:基站、路由器等的电源供应。 #### 三、BOOST电路详解 ##### 3.1 工作原理 BOOST电路,也称为升压变换器,与BUCK电路相反,用于将输入电压转换为较高输出电压。它同样包含一个开关(S)、一个电感(L)、一个二极管(D)以及一个输出电容(Co)。在开关导通期间,电源向电感充电;当开关断开时,电感和电源一起向输出电容充电,并且通过二极管D保持电流连续性。通过调整开关周期中的导通时间,可以调节输出电压水平。 ##### 3.2 主要特性 - **灵活性高**:BOOST电路不仅能够实现升压转换,还可以在一定条件下用于降压转换。 - **复杂度适中**:相对于其他类型的DC-DC转换器来说,BOOST电路的设计相对简单。 - **适用于低输入电压场合**:特别适用于太阳能电池板等低电压输入情况下的电源转换。 ##### 3.3 应用领域 - **便携式电子设备**:如充电宝、移动电源等。 - **太阳能发电系统**:用于将太阳能电池板产生的低电压转换为更高电压。 - **汽车电子系统**:例如电动汽车的电池管理系统。 #### 四、BUCK与BOOST电路的区别 - **输出电压方向**:BUCK电路输出电压低于输入电压;BOOST电路输出电压高于输入电压。 - **设计复杂度**:一般来说,BUCK电路的设计相对简单,而BOOST电路在某些特定应用场景下可能需要更复杂的控制策略。 - **应用范围**:BUCK电路更适合于需要稳定输出电压的场合;BOOST电路则适用于需要提高输出电压或处理低输入电压条件的情况。 #### 五、总结 通过对BUCK电路和BOOST电路的详细介绍,我们可以看出它们在电子设备电源管理中的重要作用。无论是对于工程师还是产品设计师而言,了解这两种电路的基本原理及其适用场景都是非常必要的。未来随着科技的进步和发展,我们有理由相信这些基础但关键的技术将在更多领域得到广泛应用和发展。
  • 并联的Simulink模型
    优质
    本研究构建了并联谐振电路的Simulink仿真模型,通过模拟不同参数条件下的电路行为,分析其频率响应特性及品质因数变化规律。 该文件是一个Simulink模型,展示了典型的并联谐振电路,并且参数可以进行修改。
  • 荡器示意图
    优质
    多谐振荡器电路是一种无需外部输入信号即可产生稳定方波输出的自激振荡电路,广泛应用于定时、脉冲发生等领域。 ### 多谐振荡器电路原理详解 #### 一、多谐振荡器概述 多谐振荡器是一种不需要外部触发信号即可自动产生周期性脉冲信号的电子装置,广泛应用于信号生成及脉冲序列产生的领域中。在电路设计上,通过深度正反馈机制使两个或多个元件(如晶体管、场效应管等)交替处于导通和截止状态,从而实现矩形波输出。由于其包含基频以及丰富的高次谐波成分,因此被称为“多谐”。 #### 二、多谐振荡器的工作原理 多谐振荡器的核心在于没有稳定的静态工作点,而是存在两个暂稳态,这两个暂稳态相互转换形成脉冲信号。 ##### 1. 简单的环形振荡器示例 假设有一个由三个与非门组成的简单环形振荡器。当初始输出为高电平时,经过第一个与非门后产生低电平;接着进入第二个与非门再次反转为高电平;最后通过第三个与非门使初始输出变为低电平,这一过程反复进行形成脉冲信号。 ##### 2. RC环形多谐振荡器 RC环形多谐振荡器比简单的环形振荡器具有更灵活的频率调节能力。当初始高电平触发第一个门后产生低电平时,随着电容器充电和放电过程中的电压变化会不断反转输出信号。整个过程中,通过调整电阻R和电容C可以改变振荡周期。 #### 三、不同类型的振荡器对比 根据应用场景的不同,可以选择以下三种类型: 1. **常规振荡器**:这种振荡器的频率主要由所使用的晶体决定,具有低成本、低噪声的特点。适用于对频率精度要求高且能够接受较长制造时间的应用场景。 2. **可编程振荡器**:这类设备能够在短时间内完成生产,适合快速交付需求,并具备较高的灵活性和适应性。 3. **模块化设计的振荡器**:这种类型结合了常规振荡器的成本效益与可编程振荡器的时间效率。它可以在较短时间制造同时保持较低噪声水平,满足多种应用场景的需求。 多谐振荡器作为一种能够自激产生矩形波的重要电路,在电子技术领域具有广泛的应用价值。通过对比不同类型的振荡器可以更好地理解它们各自的优缺点,并根据具体需求选择最合适的解决方案。