Advertisement

LM358/LM158/LM258/LM2904双运算放大器在模拟技术中的典型应用电路

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文探讨了LM358、LM158、LM258和LM2904等双运算放大器在模拟技术领域的典型应用,通过具体电路实例深入解析其工作原理与实际操作技巧。 LM358包含两个独立的高增益、内部频率补偿的双运算放大器,适用于宽范围电源电压下的单电源或双电源工作模式,在推荐的工作条件下,其电源电流与电源电压无关。该器件广泛应用于传感放大器和直流增益模块等场合。 LM358提供塑封8引线双列直插式和贴片式两种封装形式。它的特性包括内部频率补偿、高直流电压增益(约100dB)、宽单位增益频带(约1MHz),以及支持单电源供电(3—30V)或双电源供电(±1.5一±15V)。此外,它还具有低功耗电流特性,适合电池驱动的应用。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LM358/LM158/LM258/LM2904
    优质
    本文探讨了LM358、LM158、LM258和LM2904等双运算放大器在模拟技术领域的典型应用,通过具体电路实例深入解析其工作原理与实际操作技巧。 LM358包含两个独立的高增益、内部频率补偿的双运算放大器,适用于宽范围电源电压下的单电源或双电源工作模式,在推荐的工作条件下,其电源电流与电源电压无关。该器件广泛应用于传感放大器和直流增益模块等场合。 LM358提供塑封8引线双列直插式和贴片式两种封装形式。它的特性包括内部频率补偿、高直流电压增益(约100dB)、宽单位增益频带(约1MHz),以及支持单电源供电(3—30V)或双电源供电(±1.5一±15V)。此外,它还具有低功耗电流特性,适合电池驱动的应用。
  • LM158LM358LM2904手册
    优质
    本手册涵盖了LM158, LM358及LM2904等运算放大器的技术规格与应用指南,为工程师提供详尽的设计参考。 LM358是一款双运算放大器集成电路,内部包含两个独立的高增益、内置频率补偿的操作放大器。该器件适用于广泛的电源电压范围,并支持单电源或双电源工作模式。在推荐的工作条件下,其电源电流不受电源电压的影响。文档中包括了如LM158和LM358等型号的信息。
  • LM358
    优质
    LM358是一款双运算放大器集成电路,适用于各种模拟电路设计。其放大器电路模块广泛应用于信号处理、传感器接口及电源管理等领域,为电子工程提供高效解决方案。 用于低频信号放大的设备可以有效增强微弱的电信号,使其达到所需的强度水平。这类放大器通常设计有较低的工作频率范围,以确保在处理低频信号时具有较高的增益能力和良好的线性度。此外,在电路的设计中会特别考虑噪声抑制和带宽调整,以便更好地适应不同的应用场景需求。
  • 设计考量
    优质
    本文章探讨了在模拟技术设计中使用运算放大器时需要考虑的关键因素和挑战,旨在帮助工程师优化电路性能。 通常情况下,单电源工作与低压工作类似,将电源从±15V或±5V改为单一的5V或3V供电,从而缩小了可用信号范围。这使得共模输入范围、输出电压摆幅、CMRR(共模抑制比)、噪声以及其它运算放大器性能限制变得尤为重要。在所有工程设计中,常常需要通过牺牲系统某一方面的性能来改善另一方面的性能。关于单电源运算放大器指标的折衷讨论也体现了这些低压放大器与传统高压产品的差异。 输入级考虑:确定单电源运算放大器时首要关注的是共模电压范围问题。虽然满摆幅输入能力可以解决这一难题,但真正的满摆幅工作也会带来其他方面的代价。Maxim公司的大多数低压运算放大器允许的共模电压输入范围包括负电源电压(具体数值参见相关表格),但也仅限于此。
  • LM35824种
    优质
    本书详细介绍了LM358运算放大器的24种经典应用场景和电路设计,适用于电子工程师、学生及爱好者深入理解并掌握该芯片的功能与使用技巧。 单片机及硬件设计可以配合驻极体放大器实现音频输入的放大功能,并将其送入数模转换电路。
  • 一种Rail-to-Rail设计
    优质
    本研究设计了一种具有轨至轨特性的运算放大器,并探讨了其在模拟电路中的广泛应用。该设计优化了信号处理效率和性能,尤其适用于便携式电子设备与生物医学传感器等领域。 摘要:本段落基于SMIC 0.18微米CMOS混合信号工艺设计了一种低功耗轨对轨运算放大器,并使用Spectre仿真器对其各项性能参数进行了模拟测试。该运放采用3.3V电源供电,输入共模电压和输出摆幅均实现了轨到轨覆盖,在整个输入共模范围内跨导变化仅15%,直流开环增益达到99dB,单位增益带宽为3.2MHz,并在负载电容为10pF的情况下相位裕度为59°。此外,该运放的功耗仅为0.55mW。 近年来,以电池供电为主的便携式电子产品得到了广泛应用,这对采用低电压模拟电路芯片来降低能耗提出了迫切需求。在这种低压工作条件下,为了提升运算放大器的信噪比、输入共模电压范围以及信号动态输出性能显得尤为重要。
  • 开环增益分析
    优质
    本篇文章专注于探讨运算放大器在模拟电路设计中的核心特性——开环增益,并深入分析其对系统性能的影响。 大多数电压反馈(VFB)型运算放大器的开环增益非常高。常见的数值范围从10万到100万不等,而高精度器件则可达该值的十倍至一百倍之间。一些快速运算放大器的开环增益较低,但几千以下的增益并不适合用于需要高度精确的应用中。此外还应注意的是,开环增益会受温度变化的影响,并且即使在同一类型的设备间也会存在显著差异;因此,为了确保性能稳定和一致性的实现,必须使用很高的增益值。 电压反馈运算放大器以电压输入/输出的方式运行,其开环增益是一个无量纲的比例。然而,在数值较小的情况下,数据手册通常会用V/mV或V/μV来表示该比值的大小,并且也可以采用dB形式表达电压增益;换算公式为:dB = 20×logA。
  • 负反馈课程设计
    优质
    本文探讨了负反馈放大电路在《模拟电子技术》课程设计教学环节的应用,分析其原理并提供具体的设计案例。通过引入实际问题和工程实践,增强学生对理论知识的理解与运用能力。 **模拟电子技术课程设计:负反馈放大电路** 在本次课程设计中,我们将探讨如何通过引入负反馈来优化放大器的性能,并掌握不同类型的反馈组态以改善放大电路的特点,从而提高分析与解决问题的能力及学习效率,为今后的学习打下坚实的基础。负反馈在实际应用中的重要性不言而喻,在电子线路领域有着广泛的应用范围。 尽管降低增益是引入负反馈的一个代价,但其主要目的是为了优化放大器的工作性能:稳定增益、调整输入和输出阻抗、减少非线性失真以及扩展通频带。因此,几乎所有实用的放大电路都会采用这种方式来提高工作稳定性及效率。 在课程中已经详细介绍了负反馈的概念及其类型等知识点,并明确了将一部分或全部输出信号通过特定电路送回到输入端的过程称为“反馈”。根据其对系统的影响分为正向和反向两种形式,在实际应用当中,我们主要关注的是后者——即当引入的反馈导致净输入量减少时,则为负反馈。 **关键词:** - 负反馈 - 三极管 - 放大倍数 - 频带宽度 本设计报告分为若干章节: 1. **性能指标** 2. **原理框图及基本公式(第4至6页)** 3. 探讨引入串并联负反馈对电阻值的影响,具体包括: - 串联负反馈使输入阻抗增大 - 并联负反馈使输入阻抗减小 - 电压负反馈降低输出阻抗 - 直流电流的正向或反向作用于负载会改变其特性 4. **设计原则** 5. **设计方案及选定** 6. 多级放大电路单元的设计,包括: - 第一级 - 第二级 - 第三级 7. 整体电路布局与工作原理说明。 8. 对多级负反馈放大器的检测方法进行分析,并核算技术指标以确保设计符合预期性能要求。 9. 列出所需元器件清单,方便后续组装调试使用。 10. 总结心得体会 11. 参考文献列表 通过本课程的设计实践,我们不仅加深了对负反馈放大器的理解与应用能力,还为将来深入学习电子技术打下了良好基础。
  • 功耗分析计
    优质
    本文章主要探讨运算放大器在各种应用电路中功耗的理论分析与实际计算方法,旨在为电子工程师提供优化设计和节能方案。 在将运算放大器设计用于全新应用时,人们经常问到的两个问题是:它的功率耗散“典型值”是多少?以及它的功率耗散“最大值”是多少?这些问题通常在我之前的帖子中有所讨论。