Advertisement

Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR-torch)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目为深度残差网络增强版(EDSR)的PyTorch实现,旨在通过改进的深层架构提升单图像超分辨率处理效果。 EDSR-Enhanced Deep Residual Networks for Single Image Super-Resolution是NTIRE2017的冠军论文代码,使用Torch编写,欢迎下载。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR-torch)
    优质
    本项目为深度残差网络增强版(EDSR)的PyTorch实现,旨在通过改进的深层架构提升单图像超分辨率处理效果。 EDSR-Enhanced Deep Residual Networks for Single Image Super-Resolution是NTIRE2017的冠军论文代码,使用Torch编写,欢迎下载。
  • Deep Convolutional Networks for Image Super-Resolution Code
    优质
    本代码实现了一种基于深度卷积网络的图像超分辨率技术,能够有效提升低分辨率图像至高分辨率状态,保持细节清晰度。 使用深度卷积网络的图像超分辨率技术代码
  • Deep Convolutional Networks for Image Super-Resolution.pdf
    优质
    本文探讨了深度卷积网络在图像超分辨率领域中的应用,提出了一种基于深度学习的技术方案,以提升低分辨率图像的细节和清晰度。 在深入探讨卷积神经网络(CNN)如何应用于图像超分辨率重建之前,首先需要了解什么是图像超分辨率技术。这项技术旨在从单个低质量图片中生成高质量的高分辨版本。这是一个计算机视觉领域中的经典难题,因为对于任何一个给定的低像素点来说,存在多种潜在的对应高解析度解决方案。这使得问题本质上成为一种不适定的问题,并且其答案不是唯一的。 为了解决这个问题,通常需要依赖强有力的先验知识来限制可能的答案空间。目前最先进的方法主要采用基于样本的学习策略。在这篇文章中,作者提出了一种深度学习的方法,该方法直接学习低分辨率图像与高解析度图像之间的映射关系。这种映射被表示成一个深层卷积神经网络(CNN),它接受一张低分辨图片作为输入,并输出相应的高质量版本。 研究人员进一步展示了基于稀疏编码的超分辨率技术实际上也可以被视为一种深度卷积网络的形式,但不同于传统的分开处理各个组件的方法,所提出的深度CNN方法则是对所有层进行联合优化。这种结构不仅表现出卓越的重建质量,在实际应用中还实现了快速响应速度。 该模型具有轻量级的设计,并且在性能和效率之间达到了良好的平衡。此外,研究团队还将网络扩展到同时处理三个颜色通道(红、绿、蓝),并展示了更好的整体重建效果。卷积神经网络因其能够自动提取图像特征的能力,在图像超分辨率任务中展现出了巨大的潜力。 文章还提到了稀疏编码技术,这是传统方法在图像超分辨领域的重要组成部分。通过使用一组基础向量来表示数据,这些向量可以捕捉到图像中的关键特性,并且通常利用优化算法将低质量的图象分解为一系列具有稀疏特性的表达方式然后重建出高质量版本。 尽管传统的稀疏编码方法已经被广泛研究和应用在超分辨率领域中,但作者提出了一种新的视角:即这些传统技术也可以被视为深度卷积网络的一种形式。这表明了深度学习技术和经典方法之间存在着某种联系与转换关系。 此外,文章还讨论了设计轻量级CNN的重要性,在保持高性能的同时实现快速运行。研究人员必须精心挑选合适的架构和参数设置来达到这个目标。 最后,该文档强调颜色通道的处理对于图像超分辨率重建至关重要,并且展示了一个能够同时处理多个颜色通道并显著提高整体质量的例子。这说明在生成高质量高解析度图片的过程中融合色彩信息是一个关键步骤。 总而言之,这篇论文主要介绍了使用深度卷积神经网络进行端到端学习的方法来解决图像超分辨率的问题上的最新进展。它强调了这种方法如何利用自动特征提取的优势,并探讨了不同网络设计和参数设置对性能的影响以及颜色通道处理的重要性。这对于深入研究该领域的人来说是非常重要的知识点。
  • Gradient Profile Prior for Image Super-Resolution
    优质
    《Gradient Profile Prior for Image Super-Resolution》提出了一种基于梯度配置先验的信息超分辨率方法,有效提升了图像恢复质量。 发表在CVPR 2008年的图像超分辨率论文采用了梯度场先验方法。
  • Residual Shrinkage Networks with Deep Learning for Fault Diagnosis.pdf
    优质
    本文提出了一种基于深度学习的残差收缩网络模型,用于机械设备故障诊断,通过实验验证了该方法的有效性和优越性。 Deep Residual Shrinkage Networks for Fault Diagnosis, by Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, and Michael Pecht, Fellow Member of IEEE.
  • VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE SCALE IMAGE RECOGNITION...
    优质
    这篇论文提出了非常深的卷积神经网络模型,在大规模图像识别任务中取得了卓越成果,为深度学习研究提供了重要参考。 这篇文章的标题为“VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION”,主要探讨了在大规模图像识别任务中卷积神经网络(ConvNets)深度对准确率的影响。文章的核心贡献在于对不同深度的网络进行了全面评估,采用了使用3×3小尺寸卷积滤波器的独特架构。研究发现表明,将网络深度提升至16-19层权重层级可以显著提高性能,并且这些成果构成了作者团队在ImageNet挑战赛2014年竞赛中的基础,在定位和分类两个赛道中分别获得第一名和第二名的成绩。 文中提及的关键知识点和技术术语包括: VGG-NET架构:Karen Simonyan 和 Andrew Zisserman提出的一种深度非常深的卷积神经网络模型,通常拥有16-19层卷积层。这种结构在图像识别任务中的表现尤其出色。 卷积神经网络(ConvNets):一种包含卷积运算在内的多层级神经网络架构,主要用于处理具有类似网格状数据特性的信息如图像和视频。 ImageNet挑战赛:一个旨在评估大规模视觉识别系统的竞赛活动,提供了大量用于训练和测试的图像集。 深度学习技术:通过构建深层结构进行分层抽象表示的学习方法,在图像识别中已经成为主流手段之一。 小尺寸卷积核(3×3):本段落指出使用这种滤波器可有效减少参数数量并支持网络加深设计思路,为后续研究提供了重要参考依据。 模型泛化能力:指算法对新数据集的适应性表现情况;文中显示所提方法在其他测试集合上同样具备优异性能说明其强大的迁移学习潜力。 高性能计算系统(如GPU或分布式集群)的应用价值:文章强调了这些硬件设施对于训练复杂深度网络的重要性,为未来的研究提供了必要的技术支持框架。 通过对这篇文章内容的分析,我们可以深入了解2014年前后图像识别领域内深度神经网络技术的发展状况,并认识到VGG-NET在这一历史节点上的重要性及其后续影响。该研究不仅推动了相关领域的学术进展,也为工业界带来了实质性的变革机遇。两位作者Karen Simonyan和Andrew Zisserman来自牛津大学视觉几何组(Visual Geometry Group),他们所提出的模型至今仍被广泛应用于各种实际场景中。
  • 【7】Deep Residual Learning in Image Recognition.pdf
    优质
    本文介绍了深度残差学习在图像识别中的应用,提出了一种有效的网络结构,显著提升了大规模图像分类任务的性能。 深度神经网络更难训练。我们提出了一种残差学习框架来简化比之前使用的网络更深的网络的训练过程。我们将层重新定义为以输入数据作为参考来学习残差函数,而不是直接学习未参照的数据变换函数。通过全面的经验研究,我们证明了这些残差网络更容易优化,并且随着深度大幅度增加时可以提高准确性。在ImageNet 数据集上,我们的测试表明使用高达152 层的残差网络比VGG 网络[41] 更深但复杂度更低。一个这样的残差网络集合在 ImageNet 测试集中达到了3.57% 的错误率,在ILSVRC 2015 分类任务中获得第一。我们还对CIFAR-10 数据集进行了具有100 和1000 层的深度分析。 对于许多视觉识别任务来说,表示层的深度至关重要。仅仅因为我们使用了非常深的表现形式,我们在COCO 对象检测数据集中获得了28% 的相对改进。残差网络是我们的ILSVRC和COCO 2015 竞赛提交的基础,在这些竞赛中我们还在ImageNet 检测、ImageNet 定位、COCO 检测以及COCO 分割任务上获得了第一的位置。
  • Foreground Segmentation in PyTorch Code for Anomaly Detection in Surveillance Video Using Deep Residual
    优质
    本项目利用PyTorch框架,采用深层残差网络(Deep Residual Networks)进行异常检测,针对监控视频中的前景分割问题提供了一套高效的解决方案。 监控视频中的异常检测前景分割SBRT 2017论文的Pytorch代码使用深度残差网络在监控视频中进行异常检测与前景分割。这项工作的目标是在给定时间对齐的参考视频(无异常)的情况下,识别并分离出目标视频中的异常区域。输出的分割图将具有与输入视频帧相同的分辨率。 我们使用的数据集是光盘网数据库,该数据库用于识别摄像机视野中变化或移动区域,并涵盖了广泛的检测挑战,包括典型的室内和室外视觉数据:动态背景、相机抖动、间歇性物体运动以及充满挑战性的天气条件等。此外,还有低帧率夜间采集及云台捕获中的空气湍流。 在初步工作中,我们通过获取目标视频前150帧中每个像素的中值来代替整个参考视频,从而使用单个静止参考帧进行操作。尽管这种方法并非理想选择,但由于CDNET数据库中的大多数视频都是用固定摄像机记录(PTZ类除外),因此这种做法不会产生太大影响。
  • Deep Convolutional Neural Networks for ImageNet Classification
    优质
    本文介绍了利用深度卷积神经网络进行ImageNet图像分类的方法,展示了在大规模数据集上训练深层模型的有效性。 ImageNet Classification with Deep Convolutional Neural Networks 这篇论文介绍了使用深度卷积神经网络进行ImageNet数据集分类的方法。通过这种方法,研究人员能够显著提高图像识别的准确率,并展示了深度学习技术在计算机视觉领域的强大潜力。该研究为后来的许多相关工作奠定了基础,推动了整个领域的发展。
  • (Neurocomputing21)Deep Homography Estimation for Image Stitching
    优质
    本文提出了一种基于深度学习的单应性矩阵估计方法,用于图像拼接。该方法通过神经网络自动学习特征匹配和优化过程,提高了图像拼接的质量与效率。 Image stitching via deep homography estimation (Neurocomputing 21) explores the use of deep learning techniques for estimating homographies in image stitching applications.