Advertisement

Buck-Boost PWM DC/DC转换器在电源技术中的主电路构成与控制方法分析

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文探讨了Buck-Boost PWM直流变换器在现代电源技术应用中的核心电路设计及先进的控制策略,深入剖析其工作原理和优化方案。 Buck-Boost升降压式PWM DC/DC转换器是一种单管非隔离式的变换器,其输出电压可以低于或高于输入电压。该类型的电路与常见的Buck和Boost PWM DC/DC转换器使用相同的元器件,包括开关管、二极管、电感和电容等。尽管它们的组成元件相同,但Buck-Boost转换器的独特之处在于它的输出电压方向与输入电压相反,因此也被称作反相型转换器。此外,这种变换器同样采用了PWM控制方式,并且具有两种工作模式:电感电流连续模式和断续模式。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Buck-Boost PWM DC/DC
    优质
    本文探讨了Buck-Boost PWM直流变换器在现代电源技术应用中的核心电路设计及先进的控制策略,深入剖析其工作原理和优化方案。 Buck-Boost升降压式PWM DC/DC转换器是一种单管非隔离式的变换器,其输出电压可以低于或高于输入电压。该类型的电路与常见的Buck和Boost PWM DC/DC转换器使用相同的元器件,包括开关管、二极管、电感和电容等。尽管它们的组成元件相同,但Buck-Boost转换器的独特之处在于它的输出电压方向与输入电压相反,因此也被称作反相型转换器。此外,这种变换器同样采用了PWM控制方式,并且具有两种工作模式:电感电流连续模式和断续模式。
  • BOOST DC-DCBuck-BoostSIMULINK模型仿真_DCM Boost
    优质
    本文基于SIMULINK平台构建了DCM(断续导通模式)下Boost DC-DC转换器及Buck-Boost电路的仿真模型,深入分析并比较两者在不同工作条件下的性能特性。 本段落讨论了使用Simulink进行Buck、Boost以及Buck-Boost变换器在连续导通模式(CCM)和断续导通模式(DCM)下的仿真分析。
  • 基于SimulinkBuck-Boost DC-DC仿真应用
    优质
    本研究利用Simulink软件构建了Buck-Boost直流-直流转换器的仿真模型,并探讨其在电力电子技术领域的应用,为高效能电源设计提供理论支持。 电力电子技术中的DC-DC Buck-Boost仿真电路可以用于学习。相关资料可以在网络上找到。
  • DC/DC调整输出
    优质
    本文探讨了DC/DC转换器在现代电源系统中的应用及其调节输出电压的技术原理和方法。 概要:在DC/DC转换器的应用回路中,输出电压需要通过外部控制进行调节,这种需求通常出现在由CPU芯片控制的数字电路中。下面将分析使用CPU控制D/A转换器来实现整个电路原理的方法,其中D/A转换器采用的是电压输出类型。 选择FB类型的DC/DC转换器(可通过外接电阻调整输出电压大小),其FB端子的电压可以设定为1V或0.9V以满足不同需求。 基本电路框图: 例子中,输出电压范围是0.5V到3.0V。D/A转换器具有8位分辨率和每LSB 10mV的精度。当D/A转换器满量程时其值为255;此时它的输出电压范围是从0V至2.5V。 在该电路中,设定使用了特定的元器件(具体信息见相关图示)。
  • 基于Bi-Buck-Boost双向DC-DC
    优质
    本研究提出了一种基于Bi-Buck-Boost电路设计的双向DC-DC变换器,能够高效实现能量在两个不同电压等级之间的灵活传输与转换。 双向DC-DC变换器采用Bi Buck Boost 电路,并使用电压电流双闭环控制策略。其中电流环采用了峰值电流控制方法。该设计是在MATLAB2018b版本中实现的。
  • 基于PWMDC/DC应用
    优质
    本研究探讨了脉宽调制(PWM)技术在直流-直流(DC/DC)转换器中的应用及其对现代电源系统性能的影响。通过优化设计,提高了效率与稳定性。 开关型DC/DC变换器有两种工作模式:一种是脉冲宽度调制(PWM)方式,在这种模式下保持开关的工作周期不变,并调整导通时间;另一种则是脉冲频率调制(PFM)方式,即固定导通时间而改变开关的工作周期。在PWM DC/DC变换器中,通过控制功率开关管的重复开启与关闭过程,将一种直流电压或电流转换为高频方波电压或电流,并经过整流和平滑处理后输出另一种所需的直流电压或电流。这种变换器主要由功率开关管、整流二极管、滤波电路和PWM控制器构成。 当输入端和输出端之间需要电气隔离时,可以利用变压器来实现隔离并调整升压或降压需求。PWM DC/DC变换器的工作机制如图1所示。随着工作频率的提升,对滤波电感的要求也相应提高。
  • 半桥式PWM DC/DC工作原理
    优质
    本文章介绍了半桥式脉宽调制(PWM)直流-直流(DC/DC)转换器的工作机制及其在现代电源技术领域中的应用,深入探讨了其效率与稳定性。 图1展示了输出为全波整流电路的半桥式PWM DC/DC转换器的主要电路及其关键工作波形。该电路实际上是两个正激式PWM DC/DC转换器的组合,每个正激式转换器的输入电压相同,输出电压均为U。变压器初级绕组匝数记作W1,而两个次级绕组的匝数相等,即W21=W22=W2,因此初次级绕组的匝数比K等于W1/W2。图中虚线框内表示的是变压器漏感LLk,在分析时假设LLk=0。 当开关管V1导通时,变压器初级绕组上的电压为UAB。由于次级绕组感应电动势“x”端表现为正极性,所以整流二极管D会开始工作。
  • 双管正激式(Switches Forward) PWM DC/DC
    优质
    本简介探讨了双管正激式PWM DC/DC转换器在电源技术中的应用,分析其工作原理、设计特点及效率优势。 双管正激式PWM DC/DC转换器的主电路如图1所示,其变压器次级电路与单管正激式转换器相同,但初级绕组则与两个开关管V1和V2串联连接。在PWM脉冲的作用下,这两个开关管同时导通或关断。每个开关管和初级绕组之间并联了一个续流二极管D3和D4,在开关管V1和V2关闭时,变压器的储能可以通过这些二极管回馈到直流输入电源中释放。因此,双管正激式PWM DC/DC转换器无需额外磁复位措施即可正常工作。此外,这两个二极管还起到电压钳制的作用,将开关管V1和V2承受的最大电压限制在输入电压Ui的水平。 有的文献称这种电路为混合桥式(Hybrid Bridge)电路。其中,开关管V1与D3以及V2与D4分别构成了一对并联连接组合。
  • PWM DC/DC确保输出压恒定(Uo=常数)
    优质
    本研究探讨了PWM DC/DC转换器的工作原理及其在现代电源系统中的应用,着重分析其调节机制以维持恒定的输出电压。 当Do为常数且Du等于0.5时,ILfG达到最大值ILfG max;而当Du为1/3时,IoG则达到其最大值IoG max。 图示展示了电感电流临界连续的边界曲线:曲线上方表示电感电流处于连续状态区域,下方则是断续区。具体来说,图(a)显示了在Ui保持不变的情况下输出电压Uo随着占空比Du的变化而变化时形成的边界曲线;图(b)则展示了当Uo固定时输入电压Ui随占空比Du的变动所构成的边界曲线。 根据这些图表可以发现,在多数情况下电感电流不连续的现象较为普遍。特别是在特定条件下,几乎在整个占空比Du可调范围内,电感电流都呈现断续状态。在这样的断续状态下,当开关管V导通时存储于Lf中的磁能会在其关断期间通过升压二极管D完全转移至输出端。 如果Bccst采用升压式PWM,则上述描述同样适用。
  • DC-DC图解
    优质
    本资料深入解析了DC-DC转换器的工作原理和设计技巧,并提供了详尽的电路图示例。适合电子工程师和技术爱好者参考学习。 ### DC-DC转换器电路原理图详解 #### 一、DC-DC转换器概述 DC-DC转换器是一种将直流电源电压变换为另一种不同水平的直流电源电压的电子设备,广泛应用在计算机电源、通信设备及汽车电子产品中。其主要功能在于提供稳定的输出电压,以满足各种电路对特定电压的需求。 #### 二、48V至12V DC-DC转换器原理图分析 ##### 1. 工作原理 这种类型的DC-DC转换器基于开关模式电源(SMPS)的工作机制。其核心组件包括脉冲宽度调制控制器IC1,功率晶体管Q1,储能元件如电感L和变压器B3,滤波电容C9以及续流二极管D4等。 ##### 2. 电路结构解析 - **电源输入与启动:** 输入的电力通过二极管D2和电阻R1为IC1提供大约+12V的启动电压。IC1作为整个系统的控制单元,负责生成PWM信号以调节功率晶体管Q1的工作状态。 - **PWM信号产生及放大:** IC1产生的PWM信号经电容C4耦合到变压器B3,并驱动功率开关Q1。此外,变压器B3还起到隔离和提升效率的作用。 - **能量转换与传递:** 当Q1导通时,电流通过电感L并在滤波电容C9中储存能量;当Q1断开时,电感L中的磁场能转化为电压并通过续流二极管D4为负载供电。这一过程实现了连续的能量传输。 - **反馈控制:** 为了保持输出电压的稳定性,由电阻R11、R10和R9组成的分压网络用于检测输出电压,并将其送回IC1的反馈端口(脚12)。通过与内部基准电压进行比较,控制器能够调整PWM信号的比例来维持稳定的输出。 - **保护机制:** 当负载发生短路或过载时,IC1会监测脚13上的电压并控制PWM信号的宽度以使功率开关Q1停止工作,从而防止设备损坏。 ##### 3. 振荡频率计算 振荡电路的时间常数由电容C8和电阻R7决定。在本例中设定为65kHz的振荡频率。通过相关公式可以验证特定组合下的L、C值是否满足预期的频率要求,但具体数值未给出。 #### 五、硬件设计要点 1. **选择合适的PWM控制器:** PWM控制器的选择至关重要,它直接影响转换器的工作效率和稳定性。 2. **功率开关的选择:** 功率晶体管Q1应具有低导通电阻以减少损耗,并且要考虑到最大电流与电压的额定值。 3. **电感设计:** 合适的电感值可以保证能量传输的有效性,需要匹配所需的开关频率并确保足够的电流余量。 4. **滤波电容选择:** 正确选用滤波电容有助于降低输出电压纹波,从而提高电源质量。 5. **散热设计:** 在高功率应用中,良好的冷却方案对于保护电子元件免受过热损坏至关重要。 #### 六、总结 通过对48V至12V DC-DC转换器原理图的深入分析,我们了解了这种类型转换器的基本工作方式及关键组件的功能。这类转换器在工业和现代电子产品中的应用非常广泛,并且正确理解与设计能够帮助工程师构建更高效可靠的电源解决方案。