Advertisement

LAGRANGE.ZIP.RAR_MATLAB 机组组合_拉格朗日法在机组组合中的应用_机组组合MATLAB程序_松弛技术在机组组合问题中的运用

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供了一套基于Matlab环境,采用拉格朗日法及松弛技术解决电力系统机组组合优化问题的源代码和相关文档,适用于科研与教学。 拉格朗日松弛法在机组组合程序中的应用可以通过一个三节点的算例来进行说明。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LAGRANGE.ZIP.RAR_MATLAB __MATLAB_
    优质
    本资源提供了一套基于Matlab环境,采用拉格朗日法及松弛技术解决电力系统机组组合优化问题的源代码和相关文档,适用于科研与教学。 拉格朗日松弛法在机组组合程序中的应用可以通过一个三节点的算例来进行说明。
  • 基于及其MATLAB实现
    优质
    本研究探讨了利用拉格朗日松弛法解决电力系统中的机组组合问题,并展示了该方法在MATLAB环境下的具体实现过程。 用拉格朗日松弛法编写的MATLAB电力系统机组组合程序。
  • 及其实现代码(MATLAB版).zip
    优质
    本资源提供了一种在电力系统优化中广泛应用的方法——拉格朗日松弛法的应用实例及其MATLAB实现代码,旨在解决复杂的机组组合问题。 拉格朗日松弛法在机组组合中的应用以及相关的算法介绍和Matlab源码分享。
  • MATLABBenders分解解决
    优质
    本研究探讨了在MATLAB环境下应用Benders分解法解决电力系统中的机组组合问题。通过该方法有效减少了计算复杂性,提高了大规模系统的优化效率和可行性。 使用Benders分解法在MATLAB中求解机组组合问题。
  • YALMIP电力系统示例1
    优质
    本文通过具体案例展示了YALMIP工具箱在解决电力系统机组组合优化问题中的应用,详细介绍了建模过程及求解方法。 YALMIP解决电力系统机组组合问题范例1的资源包括详细介绍文档和相应的代码。后续将继续推出相关范例。
  • 电力系统__Matlab_
    优质
    本项目运用Matlab软件针对电力系统的机组组合问题进行建模与求解,旨在优化发电机组调度,提高电力系统运行效率和经济性。 本段落件包含地区机组仿真数据及相关机组最优组合算法程序。
  • 电力系统优化
    优质
    《电力系统中的机组组合优化问题》旨在探讨如何通过科学的方法和模型,对发电机组进行最优调度与组合,以满足电力系统的安全、经济运行需求。 关于机组组合优化的MATLAB程序已编写完成,并且原始数据已经输出到表格里,可以直接运行。
  • MATLAB和Benders分解解决
    优质
    本研究运用MATLAB软件结合Benders分解算法,旨在优化电力系统中的机组组合问题,提高计算效率与解决方案的质量。 在优化领域,Benders分解法是一种强大的数学编程技术,尤其适用于大规模线性规划问题。它由J.F. Benders在1962年提出,旨在将一个复杂的优化问题转化为两个或多个更小、更容易处理的子问题。Matlab作为一款功能强大的数值计算软件,提供了丰富的优化工具箱,使得我们可以方便地应用Benders分解法来解决实际问题,如本例中的“机组组合问题”。 机组组合问题是电力系统中常见的一个问题,目标是确定在给定时间内哪些发电机组应该运行,以满足电力需求的同时最小化运营成本。这个问题通常表现为一个混合整数线性规划(MILP)问题,包含大量的决策变量和复杂的约束条件。 Benders分解法的基本思路是将原问题分为主问题(Master Problem)和子问题(Subproblem)。主问题负责寻找一组可行的整数解,而子问题则评估这些解的可行性及优化性能。通过交替迭代,主问题和子问题逐步接近最优解。 在Matlab中实现Benders分解法时,首先需要定义原始问题的模型,包括决策变量、目标函数和约束条件。然后将原问题拆分为连续的主问题和离散的子问题。通常情况下,主问题是线性规划(LP)形式的问题,并且可以通过使用`linprog`或`intlinprog`等Matlab优化工具箱中的函数来解决;而子问题是另一个可能为LP的形式,用于检验解的可行性并生成Benders切割。 1. **主问题**:初始化为主问题的松弛版本,即所有决策变量均为连续。在每一轮迭代中,使用如`linprog`或`intlinprog`等优化函数来解决主问题,并得到一组可能的整数解。 2. **子问题**:基于当前解的状态建立新的子问题,检查该解是否可行。如果不可行,则生成切割平面并添加到主问题中以限制未来解的空间。这一步通常涉及编写自定义的切割生成器函数,并使用Matlab中的`fmincon`或`quadprog`等优化工具箱来解决。 3. **迭代与终止**:在每次迭代过程中,交替地对主问题和子问题进行求解,直到满足停止准则(如达到预设的最大迭代次数、最优解的精度要求等)为止。 实现Benders分解法时,在Matlab中需要注意以下几点: - 正确存储和管理主问题与子问题中的变量、约束条件及目标函数。 - 根据具体需求选择合适的切割类型和生成规则,以提高算法效率。 - 熟练使用如`linprog`、`quadprog`和`fmincon`等Matlab优化工具箱,并根据需要编写自定义的求解逻辑。 - 仔细监控算法性能并适时调整参数来改善运行速度及解的质量。 在提供的文件“利用Benders分解法解决机组组合问题”的示例中,包含了具体的Matlab代码实现过程。通过学习这些代码可以深入理解如何使用Benders分解方法,并将其应用于其他类似的优化问题之中。