Advertisement

C语言中的双向链表与双向循环链表详解

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本文深入讲解了C语言中双向链表和双向循环链表的概念、结构及操作方法,并提供了相关示例代码。 本段落主要介绍了C语言中双向链表和双向循环链表的实现与操作方法,包括定义、初始化过程、插入及删除结点的操作步骤。 一、概念解释 在C语言编程环境中,双向链表是一种数据结构形式,在每个节点内包含两个指针:一个指向其前驱节点(prior),另一个则指向后继节点(next)。而双向循环链表则是这种基础的拓展类型,它将最后一个结点与头结点连接起来形成闭环。 二、初始化过程 为了创建和初始化这两种类型的链表结构,需要遵循以下步骤: 1. 创建一个头结点,并将其prior和next指针设为空。 2. 依次为每个节点分配内存空间并设置其data字段值(例如字母)。 3. 设置新节点的prior指向当前处理中的前一节点,同时将new->next指向下一个待创建或已存在的后续节点。 4. 更新当前正在操作的结点的next指针使其指向最新添加的新结点。 三、插入与删除 对于双向链表和循环链表而言: - 插入:首先建立一个新的数据项,并将其prior及next初始化为空。然后,将新元素连接到指定位置之前或之后。 - 删除:定位要移除的节点后,更新其前后邻居结点之间的链接关系以绕过被删除的对象。 四、实例代码 这里给出一段C语言程序来演示如何实现双向链表和循环链表的基本操作: ```c #include #include using namespace std; const int OK = 1; const int ERROR = 0; const int LETTERNUM = 26; // 假设字母数量为26个 typedef char ElemType; // 数据类型定义 struct Node{ ElemType data; struct Node * prior; // 指向前驱结点 struct Node * next; // 指向后继结点 }; int InitList(Node *&L){ Node *p,*q; int i; L = new Node; // 创建头节点 L->next = NULL; p = L; for(int i=0;idata = A + i; q->prior = p; if(i == LETTERNUM - 1){ // 最后一个节点指向头结点 L->next = NULL; p->next = q; } else { p->next = q; } p = q; } return OK; } void Change(Node *&L,int i){ // 移动指针到特定位置 if (i>0){ while(i--){ L = L->next; } } else { while(i++){ L = L->prior; } } } int main(){ Node *head = NULL; InitList(head); int n; cout << 输入位置: << endl; cin >> n; Change(head,n); for(int i=0;inext; cout<data<< ; } return 0; } ``` 该程序展示了如何使用C语言创建双向链表和循环链表,并提供了基本的插入、删除及遍历操作。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • C
    优质
    本文深入讲解了C语言中双向链表和双向循环链表的概念、结构及操作方法,并提供了相关示例代码。 本段落主要介绍了C语言中双向链表和双向循环链表的实现与操作方法,包括定义、初始化过程、插入及删除结点的操作步骤。 一、概念解释 在C语言编程环境中,双向链表是一种数据结构形式,在每个节点内包含两个指针:一个指向其前驱节点(prior),另一个则指向后继节点(next)。而双向循环链表则是这种基础的拓展类型,它将最后一个结点与头结点连接起来形成闭环。 二、初始化过程 为了创建和初始化这两种类型的链表结构,需要遵循以下步骤: 1. 创建一个头结点,并将其prior和next指针设为空。 2. 依次为每个节点分配内存空间并设置其data字段值(例如字母)。 3. 设置新节点的prior指向当前处理中的前一节点,同时将new->next指向下一个待创建或已存在的后续节点。 4. 更新当前正在操作的结点的next指针使其指向最新添加的新结点。 三、插入与删除 对于双向链表和循环链表而言: - 插入:首先建立一个新的数据项,并将其prior及next初始化为空。然后,将新元素连接到指定位置之前或之后。 - 删除:定位要移除的节点后,更新其前后邻居结点之间的链接关系以绕过被删除的对象。 四、实例代码 这里给出一段C语言程序来演示如何实现双向链表和循环链表的基本操作: ```c #include #include using namespace std; const int OK = 1; const int ERROR = 0; const int LETTERNUM = 26; // 假设字母数量为26个 typedef char ElemType; // 数据类型定义 struct Node{ ElemType data; struct Node * prior; // 指向前驱结点 struct Node * next; // 指向后继结点 }; int InitList(Node *&L){ Node *p,*q; int i; L = new Node; // 创建头节点 L->next = NULL; p = L; for(int i=0;idata = A + i; q->prior = p; if(i == LETTERNUM - 1){ // 最后一个节点指向头结点 L->next = NULL; p->next = q; } else { p->next = q; } p = q; } return OK; } void Change(Node *&L,int i){ // 移动指针到特定位置 if (i>0){ while(i--){ L = L->next; } } else { while(i++){ L = L->prior; } } } int main(){ Node *head = NULL; InitList(head); int n; cout << 输入位置: << endl; cin >> n; Change(head,n); for(int i=0;inext; cout<data<< ; } return 0; } ``` 该程序展示了如何使用C语言创建双向链表和循环链表,并提供了基本的插入、删除及遍历操作。
  • C++实现
    优质
    本篇文章详细介绍了如何使用C++语言实现一个双向循环链表的数据结构。文中包含了节点定义、插入删除操作以及遍历方法等核心代码示例。适合对数据结构感兴趣的编程爱好者阅读和实践。 本段落实例展示了如何用C++实现双向循环链表的代码。 一、概念 1. 在双链表中的每个节点应包含两个链接指针: - lLink 指向前驱结点(前驱指针或左链指针) - rLink 指向后继结点(后继指针或右链指针) 2. 双链表通常采用带附加头节点的循环方式:first 是一个不存放数据的头指针,或者可以用来存储特殊需求的数据。它的lLink指向双链表中的尾节点(最后一个有效节点),而rLink则指向首结点(第一个有效节点)。链表中首个节点的左链接和末个节点的右链接都直接连接到附加头结点。 二、实现程序 1. DblList.h 头文件用于定义双向循环链表的基本结构。
  • C】实现约瑟夫
    优质
    本教程讲解了如何使用C语言编写双向及循环链表,并基于此数据结构实现经典的约瑟夫环问题算法。适合进阶学习者研究链表操作与应用。 约瑟夫环问题有多种表述方式。这里举一个例子:假设有n个人(编号为1、2、3...n)围坐在一张圆桌旁,每个人都有自己的一个密码。从第一个人开始报数,当数到m时,那个人出列;他的下一位接着从1开始重新报数,直到数到刚被移除的那人的密码为止再次有人出局;依此类推,直至所有人全部离开桌子。最后剩下的那位即为胜利者。
  • C实现
    优质
    本文章详细讲解了如何使用C语言来创建和操作一个双向链表的数据结构。包括节点的定义、插入、删除等基本操作,并附有代码示例。适合初学者学习数据结构与算法。 本段落分享了一段使用C语言实现双向链表的代码,并基于作者的理解编写而成,希望读者会喜欢。文章最后还附上了一个网友编写的关于双向链表中删除节点、插入节点以及双向输出等操作的优质代码。 在C语言编程环境中,双向链表是一种非常重要的数据结构,它包含前向和后向两个指针,这使得进行节点的插入、删除及查找等工作变得更为便捷。下面是对文中提及的知识点的具体解释: 首先需要定义一个用于存储用户信息(包括ID与用户名)的数据类型——`struct userdata`。该结构体中包含了以下成员: 1. `int userid`:用来标识每个用户的唯一身份。 2. `char username[30]`:长度不超过30个字符的字符串,代表用户名。 3. 两个指针变量(即`previous`和`next`)分别指向当前节点前后的其它链表元素。 随后定义了一个全局变量——名为“header”的双向链表头部结点。此设置便于在不同函数间访问整个列表结构。 接下来是几个关键的函数,用于实现对双向链表的操作: 1. `int insert_list(struct userdata *header, size_t position, char name[], size_t id)`:负责向指定位置插入新节点。 2. `int delete_node(struct userdata *header, size_t position)`:删除特定位置上的结点。 3. `int alter_node(struct userdata *header, size_t position, size_t id, char name[])`:修改给定索引处的用户信息。 4. `struct userdata *search_node(struct userdata *header, size_t position)`:查找指定位置节点并返回其指针值。 5. `int travel_list(struct userdata *header)`:遍历整个链表,并打印每个结点的信息内容。 6. `int isempty(struct userdata *header)`:判断列表是否为空,即头结点的前向和后向指针皆为NULL时视为空状态。 7. `int write_into_file(struct userdata *header, FILE *fp)`:将当前链表结构写入文件中以实现数据持久化存储功能; 8. `int read_from_file(struct userdata *header, FILE *fp)`:从指定文件读取信息并重建双向列表。 在`main()`函数内,首先创建了一个头部结点,并通过调用`read_from_file()`来初始化链表。之后程序进入一个循环让用户输入ID和用户名等数据以执行插入、删除或修改等操作。这些功能的实现均基于上述定义的一系列接口方法完成。 双向链表的优点在于其灵活性——能够快速找到前后节点,从而简化了插入与移除元素的操作流程;然而它也存在一些缺点:由于每个结点需要额外存储两个指针信息,因此在空间占用方面比单向列表更大。需要注意的是,在实际应用中还需要加入对异常情况(如非法输入、文件读写错误等)的处理以保证程序稳定运行及数据安全。另外为了增强代码维护性与健壮度,通常采用面向对象的方式将链表操作封装到类内实现。
  • 含头结点
    优质
    含头结点的双向循环链表是一种数据结构,它在链表两端增加指针连接,并引入头结点方便操作。这种结构支持高效的前后向遍历和节点插入删除。 C++实现的带头结点的双向循环链表,数据结构课程设计。
  • C实现 经典程序示例
    优质
    本示例展示了用C语言实现的双向循环链表的经典程序,包括节点插入、删除和遍历操作,适用于数据结构学习与实践。 C语言版双向循环链表是一种经典的数据结构实现方式,通常使用指针进行编写。这种数据结构在许多算法和程序设计问题中都有广泛应用。
  • 怎样使用C++实现
    优质
    本教程详细介绍了如何运用C++语言设计和实现一个高效的双向循环链表数据结构。通过代码示例讲解了节点插入、删除及遍历操作的方法。 双向循环链表是一种每个节点都包含指向前后两个节点的指针,并且头尾互相链接的数据结构。 各种类型的链表之间有如下区别: - 单向链表:这是最基本的链表形式。 - 单向循环链表:与单向链表不同,这种类型将最后一个节点连接到第一个(即头部)节点上。因此,在遍历过程中到达头结点时就表示已经到了尾部。 - 双向链表:在单向链表的基础上增加了指向之前一个节点的指针。然而实践中使用双向非循环版本的情况较少见。 - 双向循环链表:相比单向循环链表,它允许从头部开始反方向遍历整个列表,在处理长度较长且需要频繁访问尾部元素的操作时非常高效。 例如,在`node.h`文件中定义了节点类型: ```cpp /** 节点类型。三个成员分别是: - 指向前一个节点的指针, - 元素本身, - 指向后一个节点的指针。 */ ``` 这段描述清楚地说明了一个双向循环链表中每个结点所包含的主要组成部分及其作用。
  • Python单原理应用示例
    优质
    本文深入浅出地讲解了Python中单向链表和双向链表的工作原理,并通过具体实例展示了它们的应用方法。 链表是一种重要的数据结构,在存储元素的方式上与数组不同:它通过节点之间的引用关系来连接而非连续的内存位置。在Python编程语言里,我们可以创建单向和双向链表的数据模型。 对于单向链表而言,每个结点仅包含一个指向下一个结点的指针(即`next`属性),这意味着遍历只能从头开始并按顺序进行;反方向则不可行。接下来我们将深入探讨如何在Python中实现其创建、插入和删除操作: 1. 创建单向链表: 通常,我们通过定义一个表示节点数据结构的类来构造单向链表,此类包含`data`(用于存储实际值) 和 `next`(指向下一个结点的位置) 属性。而管理整个列表的类则需要维护头结点(即`head`)和元素数量(`size`)。 2. 插入节点: 插入操作要求我们找到正确位置的前一个节点,然后修改它的`next`属性以指向新创建的结点;同时,新的结点也需要设置其下一个指针。如果是在链表头部添加,则只需更新头结点即可;若在末尾处进行插入,则需要先定位到最后一个元素。 3. 删除节点: 删除一个特定位置上的节点涉及找到该目标前驱,并调整它的`next`属性指向被删结点的后续者(如果有)。当处理首部或终端的移除时,需特别注意更新链表管理类中的相应标志位。 双向链表在单向版本的基础上增加了反方向指针(`prev`)从而允许从任一端开始遍历整个列表。这种灵活性使得它更加适用于某些特定的应用场景: 1. 创建双向链表: 创建过程与单向类似,只是每个结点现在需要同时维护`next`和`prev`两个指针,并且在初始化时头节点的前驱(`prev`)为空(即None);尾部元素则指向空作为其后续者。 2. 插入操作: 当向双向链表中插入新条目,不仅要更新当前结点之后的部分还要处理先前位置。例如,在头部添加元素需要修改初始标记的位置;而在末位处加入,则要调整最后一个已存在的节点的指针设置。 3. 删除操作: 在执行删除时除了常规地更改前一个结点外还需确保后继者的`prev`属性正确指向被移除节点之前的那个结点。同样,处理链表头部或尾部元素需要特别小心以避免引用错误等问题的发生。 尽管Python有内置的数据结构如`deque`(双端队列)可以模拟双向链表的行为,但在特定条件下自定义实现往往更能满足需求且便于理解和控制。总的来说,在频繁的插入与删除操作中使用链表相比数组能带来更好的性能优势;但同时由于其非连续存储特性在遍历效率上可能略逊一筹。因此选择合适的数据结构需根据具体的应用场景来决定。
  • C词频统计实现
    优质
    本文介绍了如何使用C语言实现一个双向链表来完成文本中的词汇频率统计。通过构建、操作和遍历双向链表的数据结构,有效地提高了词频统计的效率和准确性。该方法不仅适用于简单的文本处理任务,还可以灵活扩展到更复杂的应用场景中。 本段落介绍了一种使用C语言实现的词频统计方法。该程序采用通用数据类型的双向链表进行缓存,并能自动拆分单词。用户可以通过命令行一次性读取多个文本段落件,每个文件分别输出其统计结果。此工具设计简洁实用。
  • 基本操作
    优质
    本文详细介绍了双向链表的数据结构及其基本操作方法,包括节点插入、删除和遍历等过程。适合编程初学者学习理解。 在C语言中实现一个双向链表及其基本操作:包括链表初始化、创建节点、查询节点(按值或序号)、删除节点(同样可以按照值或者序号进行)以及释放整个链表的内存。这些功能构成了处理数据的基本框架,能够有效支持各种应用场景下的动态数据管理需求。