本文为《低压低静态电流LDO电路设计》系列的第一部分,主要介绍LDO的基本概念、工作原理及其在现代电子设备中的应用,并探讨了低功耗需求的重要性。
随着掌上智能终端的快速发展,低电压低静态电流线性稳压器(Low Drop-out Regulator, LDO)已成为关键电源管理组件之一。LDO因其具有低功耗、高电源抑制比、体积小巧以及设计简洁等特性,在各种移动设备中广泛应用。尤其是对于那些依赖电池供电的设备而言,LDO在低负载条件下的静态电流消耗直接影响着电池的使用寿命。因此,降低静态电流以延长电池寿命是LDO设计的重要目标。
为了实现这一目标,并同时解决可能由此引发的输出电压不稳定性和大的暂态变化问题,一种创新的设计方案被提出:即集成带隙基准电压源和误差放大器的功能,从而减少电路中的静态电流并控制输出电压的瞬态响应。传统的LDO通常采用分立的带隙基准电压源和误差放大器结构,而新的设计则将两者合并在一起,使得静态电流降低至原来的一半左右。尽管这种简化的设计无法调节输出电压,并且需要使用NPN晶体管,在双阱CMOS工艺中通过增加一道掩膜工艺可以解决这些问题,同时成本的增加并不显著。
带隙基准电压源是实现恒压基准的关键。它利用了三极管基射级电压的负温度系数和热力学电压的正温度系数,两者叠加生成一个在室温下具有零温度系数的稳定电压。在简化结构中,晶体管Q3与电阻R2共同定义带隙基准电压;通过PTAT(Proportional to Absolute Temperature)电流与晶体管Q1进行镜像复制以确保两者的基射级电压相等,并且调整电阻R2和R3可以控制三极管的集电极电流,从而实现稳定的基准电压。
LDO的动态行为主要由其环路增益和相位裕度决定。简化结构中的LDO有三个低频极点分别位于增益级、缓冲级以及输出节点处;为了优化暂态特性,通常会在系统中引入一个左半平面零点以补偿系统的相位延迟。这可以通过在输出端串联电阻resr与补偿电容CL来实现。晶体管Q3的集电极电流作为PTAT电流使增益级的输出阻抗相对稳定,并且缓冲级输入电容决定了负载电容,从而确保系统的主要极点p3的稳定性;通过精确匹配极点p1和零点z1可以保持环路稳定性,以维持60°相位裕度。
这种低电压低静态电流LDO的设计创新在于集成带隙基准电压源与误差放大器功能的同时减少电路中的静态电流,并借助精细频率分析及补偿策略确保输出电压的稳定。此设计适用于现代低电压环境下的SoC系统中,有助于提高电池寿命并优化整体性能。