Advertisement

带隙基准设计工艺角模拟。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该Cadence Virtuoso教程重点阐述了以无运放的Bandgap结构为例,对工艺角进行仿真的方法和技术。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 0.18μm CMOS下的电压源
    优质
    本研究聚焦于采用0.18微米CMOS工艺技术优化设计带隙基准电压源,旨在提升其温度稳定性和电源抑制比,适用于高精度模拟集成电路。 在设计CMOS带隙基准电压源的过程中,需要考虑多个关键因素以确保其性能符合特定应用需求。本段落的设计师采用0.18微米CMOS工艺,并针对广泛应用的电路如AD、DA转换器、随机存储器及闪存等,开发了一款具有高稳定性和低温度漂移特性的基准电压源。文章详细阐述了带隙基准技术的基本原理、具体设计电路结构、运算放大器的设计细节以及整体电路方案和仿真测试结果。 带隙基准技术基于晶体管的VBE(基极-发射极电压)带有负温度系数,而VT(热电压)则有正温度系数。通过合理布局这些特性可以使得输出电压VRef的温度系数接近于零,从而实现高稳定性的基准电压源。这利用了半导体材料内在物理特性的优势来达到稳定的电压输出。 在设计带隙基准电路时,为了降低输出电压值,在两个晶体管支路中并联电阻元件的做法被采用。这种策略通过调节分压比确保在整个温度变化范围内保持相对恒定的输出电压水平。尽管这些外部添加的电阻本身具有一定的温度系数影响,但它们对整体性能的影响已经被最小化。 运算放大器的设计是实现这一基准电压源的关键步骤之一。理想的运放需要具备高增益、低功耗和低噪声等特点。设计师选择了普通两级结构,并通过相位补偿电路优化了其特性。仿真结果证实设计的运放开环增益良好,且具有较大的相位裕量,这保证了运放在实际应用中的稳定性和动态响应。 整体设计方案还包括启动电路的设计,以确保基准电压源在电源开启时能够迅速达到并保持稳定的输出状态。测试表明,在各种温度和输入电压变化条件下,该设计均能快速锁定到目标值,并且表现出良好的稳定性。 使用SMIC0.18微米工艺库并通过Cadence仿真软件对整个电路进行了建模与验证。结果显示,基准电压源在不同环境条件下的性能表现良好:其温度系数为5ppm/℃;电源电压从0V至5V变化时也能保持输出的稳定性不变。这些数据表明该带隙基准电压源具有出色的稳定性和适应性,特别适合于便携式设备中的应用需求。 综上所述,本段落提出的基于0.18微米CMOS工艺的带隙基准电压源设计方案满足了高精度、低温度漂移的要求,并且设计简洁成本低廉。这使得它非常适合在对功耗和尺寸有严格限制的应用场景中使用。此外,仿真测试数据进一步验证了该方案的有效性,为未来的优化提供了参考依据。
  • 无运算放大器的电路仿真
    优质
    本研究专注于无需运算放大器的带隙基准电路的设计与优化,并通过不同工艺角下的仿真分析确保其稳定性和可靠性。 Cadence Virtuoso教程以无运放的Bandgap为例介绍工艺角仿真。
  • 0.18μm CMOS下的电压源[图]
    优质
    本文介绍了在0.18微米CMOS工艺下设计的一种新型带隙基准电压源,详细探讨了其工作原理、性能指标及优化方法。 在集成电路设计领域中,带隙基准电压源是一种核心的基础电路模块,主要用于提供高精度且稳定的电压参考。其关键在于能够在温度变化、电源波动等多种条件下维持恒定的输出电压。 本段落讨论了基于0.18微米CMOS工艺实现的带隙基准电压源的设计案例。该设计运用了带隙基准技术的基本原理,并针对温度稳定性和低输出电压的要求进行了电路优化。 带隙基准电压源在集成电路中的应用非常广泛,包括AD转换器、DA转换器、随机存取存储器(RAM)、闪存以及系统集成芯片(SoC)等。特别是在高精度比较器中,对于稳定的电压参考要求极高。与传统的带隙基准电路相比,本设计具有更高的稳定性、更低的温度漂移和更低的输出电压。 在电路设计过程中,为了达到0.6V的目标输出电压,在两个晶体管支路上并联了电阻以实现低输出电压的设计。PMOS晶体管用于电流镜,并通过调节电阻的比例来获得接近零温度系数的输出电压。 运放是带隙基准电压源设计中的核心部分,其性能对整体基准电路的效果影响极大。本设计采用了两级运放结构,能够提供高放大倍数、低功耗和低噪声的特点。仿真结果显示了该运放具有高相位裕度和高增益的幅频响应特性,确保了稳定性和高性能。 启动电路的设计对于保证电压源在上电后能迅速且稳定地工作至关重要。通过仿真验证,证明了设计中的启动时间短,并能在短时间内使输出电压稳定下来,进一步证实了该设计方案的有效性与实用性。 此外,仿真的结果显示,在不同温度和电源电压变化条件下,基准电压源仍表现出良好的稳定性。其温度系数在一定范围内可以低至5ppm/℃;即使电源电压从0V增加到5V时,基准电压的输出也几乎不变,表明了它对电源波动的良好适应性。 综上所述,在采用0.18微米CMOS工艺的基础上,该带隙基准电压源设计实现了低电压输出、高稳定度及低温度系数等性能指标。通过合理的电路设计和充分的仿真验证确保其在各种工作环境下的可靠性和稳定性,特别适用于对电压稳定性有较高要求的便携式电路设计中,并为集成系统提供了必要的参考电压支持。
  • Cadence LDO电路输出电压于TSMC18RF电路程文件分享
    优质
    本工程文件详细介绍了在TSMC 18RF工艺下设计的Cadence低 dropout (LDO)带隙基准电路,包括完整的输出电压设计方案与实现细节。适合从事相关领域研究和开发的专业人士参考学习。 基于TSMC18RF工艺的Cadence LDO带隙基准电路设计:输出电压为1.2V的模拟IC设计。该工程文件包含完整的Cadence Virtuoso电路设计,可以直接导入使用。关键词包括:Cadence LDO带隙基准电路、输出电压1.2V、TSMC18RF工艺和模拟IC设计Cadence Virtuoso。
  • 于TSMC18的1.8V Cadence LDO和电路报告及程文件, 电路包含...
    优质
    本设计报告详述了采用台积电18纳米工艺,针对1.8V电源电压环境下Cadence LDO与带隙基准源电路的设计。涵盖全面的模拟电路开发流程及其配套工程文档。 本设计报告涵盖了基于TSMC18工艺的Cadence 1.8V低压差线性稳压器(LDO)与带隙基准电路的设计细节。文档包括详细的工程文件以及一份详尽的设计报告,该报告包含14页的内容,并全面介绍了模拟集成电路设计的相关技术和方法。 本项目利用Cadence Virtuoso平台进行设计工作,专注于模拟IC领域内的带隙基准电压源和低压差线性稳压器的开发。整个设计方案不仅展示了如何在TSMC 18纳米工艺下实现高效稳定的电源管理功能模块,还提供了完整的设计文件与报告文档。 项目内容包括: - 基于TSMC18工艺设计的1.8V LDO电路 - 包含工程数据和分析结果在内的详细设计报告 所有提供的材料均为直接可用格式。
  • 采用0.5um的HSPICE软件进行电路
    优质
    本研究采用0.5微米制造工艺及HSPIC仿真工具,专注于高性能带隙基准源的设计与优化,旨在提升集成电路中电源管理芯片的精度和稳定性。 本报告包含了带隙基准电路的分析、HSPICE网表的编写以及电路的仿真结果。
  • 电压源的
    优质
    本项目专注于设计一种高精度、低功耗的带隙基准电压源。通过优化电路结构和参数选择,旨在实现温度补偿功能,确保在不同环境条件下提供稳定的参考电压。 毕业设计题目为带隙基准电压源的设计(Bandgap)。
  • 0.5μm CMOS电路的
    优质
    本项目专注于设计一种应用于0.5微米CMOS工艺的高性能带隙基准电压源电路。该电路旨在提供低温度系数、高精度以及良好的电源抑制比,适用于各种模拟和混合信号系统中。 依据带隙基准原理,并采用华润上华(CSMC)0.5 μm互补金属氧化物半导体(CMOS)工艺设计了一种用于总线低电压差分信号(BLVDS)的收发器带隙基准电路。该电路具有较低温度系数和较高电源抑制比的特点。Hspice仿真结果表明,在电源电压为3.3 V,环境温度为25℃时,输出基准电压为1.25 V;在-45℃至+85℃的温度范围内,其输出电压的温度系数仅为20 pm/℃,且电源抑制比(PSRR)达到-58.3 dB。
  • 电路文档:包含版图及可调输出电压的集成电路,于UMC18,用于高精度电压
    优质
    本设计文档详述了采用UMC18工艺制作的一款带隙基准电路,具备灵活调节输出电压的功能,专为构建高精度电压基准源而优化。文档涵盖了从版图规划到模拟集成电路实现的全过程。 带隙基准电路设计文档包括版图与可变输出电压的模拟集成电路,采用UMC18工艺实现高精度电压源的设计。该文档涵盖了带隙基准电路、版图以及详细的设计信息,并且能够支持可变输出电压功能。 此外,还包含使用UMC18工艺进行模拟集成电路设计的具体内容和指导原则,特别关注于开发具有灵活输出特性的带隙基准电路及其相关版图的制作方法。
  • 低功耗CMOS电压源
    优质
    本项目专注于低功耗CMOS工艺下的带隙基准电压源设计,旨在实现高精度、低功耗与小面积集成,适用于各类集成电路中。 本段落首先分析了传统的带隙电压源原理,并提出了一种成本较低但性能较高的低压带隙基准电压源设计方案。通过采用电流反馈技术和一级温度补偿技术设计了适用于低电压环境的CMOS带隙基准电路,确保其能够在相对较低的工作电压下正常运行。文中详细介绍了该设计方案的基本原理和仿真结果分析。基于CSMC 0.5μm Double Poly Mix工艺流程进行了电路仿真,并获得了理想的结果。