Advertisement

信号的微分熵(DE)和功率谱密度(PSD)提取代码,基于MATLAB,用于特征提取。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该代码集用于信号特征提取,具体而言,它利用功率谱密度(PSD)和差分熵(DE)算法来分析信号。该代码包包含Matlab和Python两种编程语言的实现版本。输入数据采用[n*m]的矩阵形式,其中n代表电极数量,m代表时间点数量。此外,还需要提供STFT参数,包括频率域划分、采样率、起始频率、结束频率以及每个频率频段的窗函数长度。窗函数长度以秒为单位指定。输出结果则为功率谱密度(PSD)和差分熵(DE),其格式为[n*l*k],其中n代表电极数量,l代表窗窗口数量,k代表频率频段数量。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • -Matlab(DEPSD):...
    优质
    本资源提供了一套利用Matlab进行数据处理的代码,专注于通过经验模式分解(EMD)及功率谱密度分析来提取复杂信号中的关键特征。此工具包适用于信号处理的研究者和技术开发人员,助力深入理解信号内在特性及其频域表现。 功率谱密度代码用于在Matlab环境中提取信号的DE(差分熵)和PSD(功率谱密度)特征。提供两种版本:Matlab与Python。 输入参数: - data[n*m]:表示数据矩阵,其中n代表电极数量,m代表时间点。 - stft_para.stft:短时傅里叶变换的相关设置。 - stft_para.nfrequency_domains:每个频率域的采样率。 - stft_para.fStart:各频带开始频率。 - stft_para.fEnd:各频带结束频率。 - stft_para.window:每个样本点窗口长度(秒)。 - stft_para.fs:原始信号采样率。 输出参数: - psd, DE[n*l*k]:表示功率谱密度和差分熵特征值,其中n代表电极数量,l代表窗口数,k代表频率带。
  • MATLAB程序
    优质
    本程序利用MATLAB开发,旨在高效计算信号的功率谱熵及其他关键特征,适用于各类信号处理与分析任务。 该资源为试用版代码~一行代码快速实现特征提取!理论讲解请参考相关文献。 函数功能:特征提取 输入参数: - data:待处理的时域信号数据,可以是二维数组,行列方向需正确无误。 - options:其他设置选项,采用结构体方式导入。 - featureNamesCell:需要进行特征提取的名称列表,该变量为cell类型。其中包含的字符串代表特定特征名称。 目前支持以下8种特征(2022.7.10): - psdE:功率谱熵 - svdpE:奇异谱熵 - eE:能量熵 - ApEn:近似熵 - SampleEn:样本熵 - FuzzyEn:模糊熵 - PerEn:排列熵
  • MATLAB脑电情感识别中DEPSD
    优质
    本代码利用MATLAB实现脑电信号的情感识别,通过数据挖掘技术提取描述性统计(DE)和功率谱密度(PSD)特征,为情感计算研究提供技术支持。 在脑电情感识别技术中,常用的特征主要包括DE(频域特征)和PSD(功率谱密度)特征。这里提供了一些用于提取这些特征的MATLAB代码。
  • Matlab心音系统.zip
    优质
    本资源提供了一个基于Matlab开发的心音信号特征提取系统。该系统能够有效分析心音信号,并自动提取关键特征参数,适用于医学研究与临床诊断。 心音信号特征提取是生物医学工程领域中的一个重要研究方向,主要应用于心脏病的诊断与监测。在Matlab环境中进行这项工作可以利用其强大的信号处理和数据分析能力。 1. **数据预处理**:由于心音信号通常包含噪声(如环境噪声、呼吸声等),因此预处理步骤至关重要。Matlab提供了多种滤波器(例如Butterworth、Chebyshev和FIR)用于去除这些噪声,以及使用窗口函数(如Hamming或Hanning)来减小信号边缘效应。此外还需进行时间同步和归一化操作,使数据更易于分析。 2. **心音分段**:心音信号通常由两个主要部分组成——S1和S2,分别代表心脏的闭合声。利用阈值检测、自相关分析或模板匹配方法可以对心音进行准确地划分。 3. **特征提取**:常用的特征包括时域特性(如均值、方差、峰值)、频域特性(如功率谱密度、Mel频率倒谱系数MFCC)以及时间-频率领域特性(例如小波变换和短时傅立叶变换STFT)。Matlab的Signal Processing Toolbox提供了这些计算所需的各种工具。 4. **异常检测**:心音信号中的异常可能指示心脏疾病。通过比较正常心音特征与可疑心音之间的差异,可以识别出潜在问题。这通常涉及到统计测试、机器学习算法(如SVM、决策树和随机森林)的应用。 5. **模型训练及验证**:在提取特征之后,需要构建能够区分正常和异常心音的模型。这可能涉及监督学习方法(例如分类任务)或无监督学习技术(比如聚类)。Matlab的Statistics and Machine Learning Toolbox提供了多种实现这些算法的方法,并且可以通过交叉验证等手段来评估模型性能。 6. **结果可视化**:借助于丰富的图形用户界面GUI开发工具,可以创建交互式界面展示心音信号、特征图和分类结果。这有助于医学专家理解和使用系统提供的信息。 7. **文件结构**:文档中可能包含项目介绍、算法详细步骤、代码说明或实验结果等内容,为用户提供具体操作指导和技术依据。 总之,该Matlab系统提供了一个全面的心音信号处理流程,包括数据预处理、特征提取、异常检测和模型验证。这有助于科研人员及临床医生更深入地理解心脏健康状况,并提高心脏病诊断的准确性和效率。通过学习并掌握这个系统的使用方法,可以提升在生物医学信号处理领域的专业技能水平。
  • MATLAB】音频.zip
    优质
    本资源提供了一套利用MATLAB进行音频信号处理的代码,专注于从音频文件中提取频谱特征。适用于研究与开发领域内的声音分析、模式识别等应用。 从时域角度进行简单的特征识别包括以下步骤:首先载入信号并选择样本与测试数据;其次利用各类样本的平均值作为该类的时间域特征;然后通过计算测试数据与各时间域特征之间的欧几里得距离来判断其类别,进而完成特征识别,并评估识别率。 采用小波分析方法进行特征提取和分类的过程如下:首先确定连续小波变换尺度(即a的取值范围);接着执行连续小波变换以提取信号特性;然后选取各类样本并计算它们平均的小波变换特征作为该类别的代表;再通过测试数据与各类型代表之间的欧几里得距离来判断其类别,完成特征识别,并评估识别率。最后调整尺度a的取值范围,进一步优化识别效果。
  • iPLS及光析_iPLS_光_光_光
    优质
    简介:本文介绍了iPLS(间隔偏最小二乘)方法在特征提取和光谱数据分析中的应用,探讨了其如何有效简化复杂光谱数据并提高预测模型的准确性。 iPLS(迭代部分最小二乘法)是一种在光谱分析领域广泛应用的数据处理技术。它结合了主成分分析(PCA)与偏最小二乘法(PLS)的优点,旨在高效地从高维光谱数据中提取特征,并用于分类或回归分析。这些数据通常包含多个波长的测量值,每个波长对应一个光谱点。 在实际应用中,iPLS常面对的是大量冗余信息和噪声的情况。为解决这些问题,iPLS通过迭代过程逐步剔除与目标变量相关性较低的部分,并保留最关键的特征成分。其工作原理包括: 1. 初始化:选取部分变量(波段)进行PLS回归。 2. 迭代:每次迭代都利用上一步得到的残差重新计算因子,从而剔除非关键因素并强化重要信息。 3. 停止条件:当达到预设的迭代次数或者特征提取的效果不再显著提升时停止操作。 4. 结果解释:最终获得的iPLS因子可用作新的输入变量进行后续建模和分析。 在光谱数据处理中,iPLS方法具有以下优点: 1. 处理多重共线性问题的能力强大; 2. 发现隐藏于高维数据中的关键特征,并有助于减少模型过拟合的风险; 3. 动态优化过程逐步剔除不重要的变量,提高模型的解释性和准确性。 在实际应用中,iPLS被广泛应用于诸如遥感图像的地物分类和生物样本化学成分分析等领域。它能够从复杂的光谱数据集中提取有用的特征信息,并为建立机器学习模型(如支持向量机、随机森林等)提供有效的输入变量。总结来说,iPLS是一种强大的工具,在高维光谱数据分析中发挥着重要作用,通过减少复杂性提高预测能力和解释能力。
  • LMD能量
    优质
    本研究提出了一种结合局部子带相关性(LMD)与能量熵的音频特征提取方法,有效提升了模式识别性能,在多种数据集上表现出优越的效果。 首先对信号进行LMD分解,然后通过方差贡献率选择IMF分量,并计算能量熵。此方法值得尝试,可以运行,请给予好评!
  • MATLAB程序
    优质
    本软件是一款利用MATLAB开发的信号处理工具,专注于从复杂信号中高效准确地提取关键特征。通过优化算法实现快速分析和数据挖掘,适用于科研与工程应用。 通常用于信号分析,在提取特征值组成特征向量后进行模式识别,并应用于机器视觉的处理开发。
  • EEG
    优质
    本研究探讨了从脑电图(EEG)信号中有效提取特征的方法,旨在提高神经科学和临床诊断中的应用效率与准确性。 基于共空间模式的脑电信号处理方法,代码简洁易用。
  • Matlab胎儿心电.zip
    优质
    本资源提供了一套基于Matlab开发的代码,用于从孕妇腹部心电图中精确提取胎儿心电信号。适用于科研和临床研究,助力于胎儿心脏健康的早期监测与评估。 胎儿心电信号提取包含Matlab源码。